Each of the omics studies a subset of molecular biology with a data intensive and broad point of view that tries to understand global function or organisms, trying to understand what every biologically relevant molecule does as part of the hole metabolism.
The main omics are:
Omics might be stamp collecting, but maybe it is a bit more like Trading card game/Magic: The Gathering collecting, in which the cards that you are collecting actually have specific uses and interactions, especially considering that most metabolic pathways are analogous across many species.
Hierarchical diagram of the major omics
. First observed directly by the Cowan-Reines neutrino experiment.
These are also required for test tube replication.
phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9HE_-_Modern_Physics/06%3A_Emission_and_Absorption_of_Photons/6.2%3A_Selection_Rules_and_Transition_Times has some very good mentions:
So it appears that if a hydrogen atom emits a photon, it not only has to transition between two states whose energy difference matches the energy of the photon, but it is restricted in other ways as well, if its mode of radiation is to be dipole. For example, a hydrogen atom in its 3p state must drop to either the n=1 or n=2 energy level, to make the energy available to the photon. The n=2 energy level is 4-fold degenerate, and including the single n=1 state, the atom has five different states to which it can transition. But three of the states in the n=2 energy level have l=1 (the 2p states), so transitioning to these states does not involve a change in the angular momentum quantum number, and the dipole mode is not available.So what's the big deal? Why doesn't the hydrogen atom just use a quadrupole or higher-order mode for this transition? It can, but the characteristic time for the dipole mode is so much shorter than that for the higher-order modes, that by the time the atom gets around to transitioning through a higher-order mode, it has usually already done so via dipole. All of this is statistical, of course, meaning that in a large collection of hydrogen atoms, many different modes of transitions will occur, but the vast majority of these will be dipole.It turns out that examining details of these restrictions introduces a couple more. These come about from the conservation of angular momentum. It turns out that photons have an intrinsic angular momentum (spin) magnitude of , which means whenever a photon (emitted or absorbed) causes a transition in a hydrogen atom, the value of l must change (up or down) by exactly 1. This in turn restricts the changes that can occur to the magnetic quantum number: can change by no more than 1 (it can stay the same). We have dubbed these transition restrictions selection rules, which we summarize as:
Introductory Quantum Mechanics by Richard Fitzpatrick (2020) by
Ciro Santilli 37 Updated 2025-07-16
This LibreTexts book does have some interest!
The artistic instrument that enables the ultimate art: coding, See also: Section "The art of programming".
Unlike other humans, computers are mindless slaves that do exactly what they are told to, except for occasional cosmic ray bit flips. Until they take over the world that is.
Steve Jobs talking about the Internet (1995)
Source. The web is incredibly exciting, because it is the fulfillment of a lot of our dreams, that the computer would ultimately primarily not be a device for computation, but [sic] metamorphisize into a device for communication.
Secondly it exciting because Microsoft doesn't own it, and therefore there is a tremendous amount of innovation happening.
Computers basically have two applications:Generally, the smaller a computer, the more it gets used for communication rather than computing.
- computation
- communication. Notably, computers through the Internet allow for modes of communication where:
- both people don't have to be on the same phone line at the exact same time, a server can relay your information to other people
- anyone can broadcast information easily and for almost free, again due to servers being so good at handling that
The early computers were large and expensive, and basically only used for computing. E.g. ENIAC was used for calculating ballistic tables.
Communication only came later, and it was not obvious to people at first how incredibly important that role would be.
This is also well illustrated in the documentary Glory of the Geeks. Full interview at: www.youtube.com/watch?v=TRZAJY23xio. It is apparently known as the "Lost Interview" and it was by Cringely himself: www.youtube.com/watch?v=bfgwCFrU7dI for his Triumph of the Nerds documentary.
No mention of education specifically on website. But at www.washingtonpost.com/wp-srv/liveonline/00/business/saylor0621.htm from Michael J. Saylor they did show interest, so adding to this Educational charitable organization list anyways.
The time-independent Schrödinger equation is a variant of the Schrödinger equation defined as:
Equation 1.
Time-independent Schrodinger equation
. So we see that for any Schrödinger equation, which is fully defined by the Hamiltonian , there is a corresponding time-independent Schrödinger equation, which is also uniquely defined by the same Hamiltonian.
The cool thing about the Time-independent Schrödinger equation is that we can always reduce solving the full Schrödinger equation to solving this slightly simpler time-independent version, as described at: Section "Solving the Schrodinger equation with the time-independent Schrödinger equation".
Because this method is fully general, and it simplifies the initial time-dependent problem to a time independent one, it is the approach that we will always take when solving the Schrodinger equation, see e.g. quantum harmonic oscillator.
As mentioned by Craig Venter in 100 Greatest Discoveries by the Discovery Channel (2004-2005), the main outcomes of the project were:
- it established the ballpark number of human genes
- showed that human genomes are very similar across individuals.
Important predecessors:
We select for the general Equation "Schrodinger equation":giving the full explicit partial differential equation:
- , the linear cartesian coordinate in the x direction
- , which analogous to the sum of kinetic and potential energy in classical mechanics
Equation 1.
Schrödinger equation for a one dimensional particle
. The corresponding time-independent Schrödinger equation for this equation is:
Equation 2.
time-independent Schrödinger equation for a one dimensional particle
. TODO are there experiments, or just theoretical?
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact