He and John Archibald Wheeler presented the Wheeler-Feynman absorber theory.
The most important ones are:
- theory of everything. We are certain that our base equations are wrong, but we don't know how to fix them :-)
- full explanation of high-temperature superconductivity. Superconductivity already has a gazillion applications, and doing it in higher temperatures would add a gazillion more, and maybe this theoretical explanation would help us find new high temperature superconducting materials more effectively
- fractional quantum Hall effect 5/2
Other super important ones:
- neutrino mass measurement and explanation
Reduction of an elliptic curve over the rational numbers to an elliptic curve over a finite field mod p by
Ciro Santilli 37 Updated 2025-07-16
This construction takes as input:and it produces an elliptic curve over a finite field of order as output.
The constructions is used in the Birch and Swinnerton-Dyer conjecture.
To do it, we just convert the coefficients and from the Equation "Definition of the elliptic curves" from rational numbers to elements of the finite field.
For the denominator , we just use the multiplicative inverse, e.g. supposing we havewhere because , related: math.stackexchange.com/questions/1204034/elliptic-curve-reduction-modulo-p
Also known as: Quantitative PCR (qPCR).
This describes one possible concentration detection method with fluorescent molecules that only become fluorescent when the DNA is double stranded (SYBR Green)
Polymerase Chain Reaction (PCR) - Quantitative PCR (qPCR) by Applied Biological Materials (2016)
Source. This allows you to predict the exact initial concentration by extrapolating the exponential curve backwards.
How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in it Post filtration purification by
Ciro Santilli 37 Updated 2025-07-16
After filtration, all DNA should present in the filter, so we cut the paper up with scissors and put the pieces into an Eppendorf: Video 1. "Cutting vacuum pump filter and placing it in Eppendorf".
Cutting vacuum pump filter and placing it in Eppendorf
. Source. Now that we had the DNA in Eppendorfs, we were ready to continue the purification in a simpler and more standardized lab pipeline fashion.
First we added some small specialized beads and chemicals to the water and shook them Eppendorfs hard in a Scientific Industries Inc. Vortex-Genie 2 machine to break the cell and free the DNA.
Once that was done, we added several reagents which split the solution into two phases: one containing the DNA and the other not. We would then pipette the phase with the DNA out to the next Eppendorf, and continue the process.
In one step for example, the DNA was present as a white precipitate at the bottom of the tube, and we threw away the supernatant liquid: Figure 1. "White precipitate formed with Qiagen DNeasy PowerWater Kit".
At various stages, centrifuging was also necessary. Much like the previous vacuum pump step, this adds extra gravity to speed up the separation of phases with different molecular masses.
Then, when we had finally finished all the purification steps, we measured the quantity of DNA with a Biochrom SimpliNano spectrophotometer to check that the purification went well:
How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in it Pre-sequencing preparation by
Ciro Santilli 37 Updated 2025-07-16
One cool thing we did in this procedure was to use magnetic separation with magnetic beads to further concentrate the DNA: Figure 1. "GE MagRack 6 pipetting.".
The beads are coated to stick to the DNA, which allows us to easily extract the DNA from the rest of the solution. This is cool, but bio people are borderline obsessed by those beads! Go figure!
Then we prepared the DNA for sequencing with the Oxford Nanopore specific part: Oxford Nanopore SQK-LSK109 Ligation Sequencing Kit.
"De novo" means "starting from scratch", that is: you type the desired sequence into a computer, and the synthesize it.
The "de novo" part is important, because it distinguishes this from the already well solved problem of duplicating DNA from an existing DNA template, which is what all our cells do daily, and which can already be done very efficiently in vitro with polymerase chain reaction.
Notably, the dream of most of those companies is to have a machine that sits on a lab bench, which synthesises whatever you want.
The initial main applications are likely going to be:but the real pipe dream is building and bootstraping entire artificial chromosomes
- polymerase chain reaction primers (determine which region will be amplified
- creating a custom sequence to be inserted in a plasmid, i.e. artificial gene synthesis
News coverage:
- 2023-03 twitter.com/sethbannon/status/1633848116154880001
- 2020-10-05 www.nature.com/articles/s41587-020-0695-9 "Enzymatic DNA synthesis enters new phase"
Nuclera eDNA enzymatic de novo DNA synthesis explanatory animation (2021)
Source. The video shows nicely how Nuclera's enzymatic DNA synthesis works:- they provide blocked nucleotides of a single type
- add them with the enzyme. They use a werid DNA polymerase called terminal deoxynucleotidyl transferase that adds a base at a time to a single stranded DNA strand rather than copying from a template
- wash everything
- do deblocking reaction
- and then repeat until done
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact