Mathematical Sciences masters course of the University of Oxford by
Ciro Santilli 37 Updated 2025-07-16
From the 2020/2021 Oxford physics course handbooks we can determine the following structure:
- Year 1 (CP, "Coure Preliminaries", "Prelims"). Take all of:
- CP1 Classical mechanics, Special relativity
- CP2 Electromagnetism, circuit theory and optics
- CP3 Mathematical methods 1. Complex Numbers and Ordinary Differential Equations. Vectors and Matrices.
- CP4 Mathematical methods 2. Multiple Integrals and Vector Calculus. Normal Modes, Wave Motion and the Wave Equation.
- Year 2 (Part A). Take all of:
- A1 Thermal physics. Kinetic Theory, Heat Transport, Thermodynamics.
- A2 Electromagnetism and optics
- A3 Quantum physics. Quantum Mechanics and Further Quantum Mechanics.
- Short options: at least one of:
- Mathematical Methods
- Probability and Statistics
- S01 Functions of a Complex Variable
- S07 Classical Mechanics
- S10 Medical Imaging and Radiation Therapy
- S13 Teaching and Learning Physics in Schools
- S14 History of Physics
- S20 History of Science
- S21 Philosophy of Science
- S22 Language Options
- S25 Climate Physics
- S27 Philosophy of Space-Time
- S29 Exploring Solar Systems
- S33 Entrepreneurship for Physicists
- Year 3 (Part B). Take all of:
- Michaelmas term
- Hilary term
- B1 Fluids
- B3 Atomic and laser physics
- B5 General relativity
- B7 Classical Mechanics (for MPhysPhil only?)
- B8 Computational Project
- B9 Experimental Project
- Year 4 (MPhys). Select two from:
Trinity term, the third and final term of each year, contains mostly revision from the previous two terms, after which students take their final exams, which basically account for their entire grade. Trinity is therefore a very tense part of the year for the students. After that they have summer holidays, until coming back for the next year of madness.
The official external course landing page: www.ox.ac.uk/admissions/undergraduate/courses/course-listing/physics. 2021 archive: web.archive.org/web/20221208212856/https://www.ox.ac.uk/admissions/undergraduate/courses/course-listing/physics) In those pages we see the rough structure, except that it does not have the course codes "A1" etc., and some courses are missing.
At web.archive.org/web/20221229021312/https://www2.physics.ox.ac.uk/sites/default/files/2011-06-03/course_v3_pdf_80151.pdf page 11 we can see the global course structure giving the two options, 3 year BA or 4 year Oxford physics masters:
Year 1
(Prelims)
|
|
v
Year 2
(Part A)
|
+-----------+
| |
v v
Year 3 BA Year 3 (MPhys)
(Part B) (Part B)
| |
| |
v v
BA Year 4
(Part C)
|
|
v
MPhysPractical courses notes: www-teaching.physics.ox.ac.uk/
Some others with lecture notes:
- liziyan1117.com/page/:All question PDFs are uploaded to that site. Solutions are scanned from paper notebooks.
These are my own solutions to selected problem sets and past papers of the Oxford MPhys course (Years 1-3) and the MMathPhys course from the years 2014 to 2018
From LinkedIn: - pjcc.physics.ox.ac.uk/resources/notes | www.scribd.com/document/654784089/CP3-Notes-Toby-Adkins# are lectures by Toby Adkins is pointed to from Oxford Physics Joint Consultative Committee. But they are closed, i.e. require you to be in the oxford network, though not necessarily with an Oxford login. As of 2023, he was doing a postdoc: www.physics.ox.ac.uk/our-people/adkins in fusion energy.
users.physics.ox.ac.uk/~lvovsky/B3/ contain assorted PDFs from between 2015 and 2019
Syllabus reads:
- Multi-electron atoms: central field approximation, electron configurations, shell structure, residual electrostatic interaction, spin orbit coupling (fine structure).
- Spectra and energy levels: Term symbols, selection rules, X-ray notation, Auger transitions.
- Hyperfine structure; effects of magnetic fields on fine and hyperfine structure. Presumably Zeeman effect.
- Two level system in a classical light field: Rabi oscillations and Ramsey fringes, decaying states; Einstein
- A and B coefficients; homogeneous and inhomogeneous broadening of spectral lines; rate equations.
- Optical absorption and gain: population inversion in 3- and 4-level systems; optical gain cross section; saturated absorption and gain.
Professor in 2000s seems to beBut as of 2023 marked emeritus, so who took over?
- en.wikipedia.org/wiki/Paul_Ewart. He actually fought not to be dismissed by age and won!
- www.physics.ox.ac.uk/our-people/ewart
Ewart is actually religious:This dude is pure trouble for Oxford!
- www.youtube.com/watch?v=aulL-Qa65i0 Paul Ewart, Chance, Science and Spirituality by Faraday Institute for Science and Religion. Oh, he is/was actually chairman of that crap
- www.youtube.com/watch?v=PVX2F4XvGYo Chaos and the Character of God by Prof. Paul Ewart
Undated materials Ewart:
- users.physics.ox.ac.uk/~ewart/index.htm
- users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20lecture%20notes%20C%20port.pdf
- slides: users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20Lecture%20PPT%20slides%201_8.pdf. Also under: www2.physics.ox.ac.uk/sites/default/files/2011-10-19/atomic_physics_lectures_1_8_09_pdf_pdf_18283.pdf. The course was previously B1, they just change the IDs randomly from time to time to fit the B1-7 numbering.
www-thphys.physics.ox.ac.uk/people/AndreiStarinets/sr_mt_2022.html (archive) contains 2022 problem sets and notes, well done Mr Andrei Starinets!
www-pnp.physics.ox.ac.uk/~barra/teaching.shtml As of 2023, contains some good 2015 materials: web.archive.org/web/20220525094139/http://www-pnp.physics.ox.ac.uk/~barra/teaching.shtml It was called "Subatomic physics" back then.
2015 professor: Alan J. Barr.
Possible 2022 professor: Guy Wilkinson (unconfirmed): www.chch.ox.ac.uk/staff/professor-guy-wilkinson
users.ox.ac.uk/~corp0014/B6-lectures.html gives a syllabus:
- Heat capacity in solids, localised harmonic oscillator models (Dulong-Petit law and Einstein model)
- Heat capacity in solids, a model of sound waves (Debye model)
- A gas of classical charged particles (Drude theory)
- A gas of charged fermions (Sommerfeld theory)
- Bonding
- Microscopic theory of vibrations: the 1D monatomic harmonic chain. Mike Glazer's Chainplot program.
- Microscopic theory of vibrations: the 1D diatomic harmonic chain
- Microscopic theory of electrons in solids: the 1D tight-binding chain
- Geometry of solids: crystal structure in real space. VESTA, 3D visualization program for structural models; an example crystal structure database.
- Geometry of solids: real space and reciprocal space. Reciprocal Space teaching and learning package.
- Reciprocal space and scattering. A fun way to discover the world of crystals and their symmetries through diffraction.
- Scattering experiments II
- Scattering experiments III
- Waves in reciprocal space
- Nearly-free electron model
- Band structure and optical properties
- Dynamics of electrons in bands
- Semiconductor devices. Intel's "A History of Innovation"; Moore's Law; From Sand to Circuits.
- Magnetic properties of atoms
- Collective magnetism. A micromagnetic simulation tool, The Object Oriented MicroMagnetic Framework (OOMMF); OOMMF movies of magnetic domains and domain reversal.
- Mean field theory
Problem set dated 2015: users.ox.ac.uk/~corp0014/B6-materials/B6_Problems.pdf Marked by: A. Ardavan and T. Hesjedal. Some more stuff under: users.ox.ac.uk/~corp0014/B6-materials/
The book is the fully commercial The Oxford Solid State Basics.
- web.archive.org/web/20170907092044/http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option it wasn't paywalled in the past up to 2017, but later became. Bastards.
- www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/c3-intro-vacprobs17-41753.pdf gives the 2016 structure:
- Crystal Structure & Dynamics 10 lectures Dr Roger Johnston
- Band Theory 10 lectures Prof Michael Johnston
- Magnetism 7 lectures Prof Radu Coldea
- Optical Properties 6 lectures Prof Laura Herz
- Superconductivity 7 lectures Dr Peter Leek and Dr Amalia Coldea. web.archive.org/web/20170912021658/http://www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/cmpsc-handout-2017-41006.pdf
A very honest review of my Oxford University master's degree (theoretical physics at keble college) by alicedoesphysics (2020)
Source. Basically all her courses are from the Mathematical Institute of the University of Oxford, and therefore show up at the Moodle of the Oxford Mathematics Institute of Oxford.- qubit.guide/ HTML version od the book.
- github.com/thosgood/qubit.guide. Source code. Written in Bookdown.
- www.arturekert.org/iqis links to the lectures: www.youtube.com/@ArturEkert/playlists Well done in splitting those videos up!
- zhenyucai.com/post/intro_to_qi/
Interesting presentation cycle at Merton BTW: www.arturekert.org/teaching/merton
Oxford Master Course in Mathematical and Theoretical Physics by
Ciro Santilli 37 Updated 2025-07-16
Symmetry in Condensed Matter Physics course of the University of Oxford by
Ciro Santilli 37 Updated 2025-07-16
www2.physics.ox.ac.uk/students/course-materials/symmetry-in-condensed-matter-physics# Archive: web.archive.org/web/20230804204137/https://www2.physics.ox.ac.uk/students/course-materials/symmetry-in-condensed-matter-physics Lecture notes from 2019.
Professor: Radu Coldea
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





