The most important publisher, AKA "CRC Jianian". TODO meaning of Jianian?
Chinese government owned unfortunately.
Their website takes forever to load: www.china-crc.com.cn/, and features mostly Communist shit, and I can't find the decent traditional music listed there.
One thing to try is an Amazon advanced search by label "China Record Co": www.amazon.com/s?i=digital-music&rh=p_33%3AChina+Record+Co&s=relevancerank&Adv-Srch-MP3-Submit.x=42&Adv-Srch-MP3-Submit.y=4&unfiltered=1&ref=sr_adv_m_digital
Given a matrix with metric signature containing positive and negative entries, the indefinite orthogonal group is the set of all matrices that preserve the associated bilinear form, i.e.:Note that if , we just have the standard dot product, and that subcase corresponds to the following definition of the orthogonal group: Section "The orthogonal group is the group of all matrices that preserve the dot product".
As shown at all indefinite orthogonal groups of matrices of equal metric signature are isomorphic, due to the Sylvester's law of inertia, only the metric signature of matters. E.g., if we take two different matrices with the same metric signature such as:and:both produce isomorphic spaces. So it is customary to just always pick the matrix with only +1 and -1 as entries.
Basically the opposite of reductionism.
Figure "xkcd 435: Fields arranged by purity" must again be cited.
Man-in-the-middle attack
quantumcomputing.stackexchange.com/questions/142/advantage-of-quantum-key-distribution-over-post-quantum-cryptography/25727#25727 Advantage of quantum key distribution over post-quantum cryptography has Ciro Santilli's comparison to classical encryption.
Long story short:
- QKD allows you to generate shared keys without public-key cryptography. You can then use thses shared keys
- QKD requires authentication on a classical channel, exactly like a classical public-key cryptography forward secrecy would. The simplest way to do this is a with a pre-shared key, just like in classical public key cryptography. If that key is compromised at any point, your future messages can get man-in-the-middle'd, exactly like in classical cryptography.
QKD uses quantum mechanics stuff to allow sharing unsnoopable keys: you can detect any snooping and abort communication. Unsnoopability is guaranteed by the known laws of physics, up only to engineering imperfections.
Furthermore, it allows this key distribution without having to physically take a box by car somewhere: once the channel is established, e.g. optical fiber, you can just keep generating perfect keys from it. Otherwise it would be pointless, as you could just drive your one-time pad key every time.
However, the keys likely have a limited rate of generation, so you can't just one-time pad the entire message, except for small text messages. What you would then do is to use the shared key with symmetric encryption.
Therefore, this setup usually ultimately relies on the idea that we believe that symmetric encryption is safer than , even though there aren't mathematical safety proofs of either as of 2020.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact