The complex analogue of the special orthogonal group, i.e. the subgroup of the unitary group with determinant equals exactly 1 instead of an arbitrary complex number with absolute value equal 1 as is the case for the unitary group.
Examples:
- mechanical resonance, notably:
- pipe instruments
- electronic oscillators, notably:
- LC oscillator, and notably the lossy version RLC circuit
Perhaps a key insight of resonance is that the reonant any lossy system tends to look like the resonance frequency quite quickly even if the initial condition is not the resonant condition itself, because everything that is not the resonant frequency interferes destructively and becomes noise. Some examples of that:
- striking a bell or drum can be modelled by applying an impuse to the system
- playing a pipe instrument comes down to blowing a piece that vibrates randomly, and then leads the pipe to vibrate mostly in the resonant frequency. Likely the same applies to bowed string instruments, the bow must be creating a random vibration.
- playing a plucked string instrument comes down to initializing the system to an triangular wave form and then letting it evolve. TODO find a simulation of that!
Another cool aspect of resonance is that it was kind of the motivation for de Broglie hypothesis, as de Broglie was kind of thinking that electroncs might show discrete jumps on atomic spectra because of constructive interference.
Advantages of fog: there is only one, reusing hardware that would be otherwise idle.
Disadvantages:
- in cloud, you can put your datacenter on the location with the cheapest possible power. On fog you can't.
- on fog there is some waste due to network communication.
- you will likely optimize code less well because you might be targeting a wide array of different types of hardware, so more power (and time) wastage. Furthermore, some of the hardware used will not not be optimal for the task, e.g. CPU instead of GPU.
All of this makes Ciro Santilli doubtful if it wouldn't be more efficient for volunteers simply to donate money rather than inefficient power usage.
Bibliography:
- greenfoldingathome.com/2018/05/28/is-foldinghome-a-waste-of-electricity/: useless article, does not compare to centralize, asks if folding the proteins is worth the power usage...
Neon isotope line split photograph by J. J. Thomson
. Source. J. J. Thomson took this picture in 1912:There can, therefore, I think, be little doubt that what has been called neon is not a simple gas but a mixture of two gases, one of which has an atomic weight about 20 and the other about 22. The parabola due to the heavier gas is always much fainter than that due to the lighter, so that probably the heavier gas forms only a small percentage of the mixture.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact