Let' see if there's anything in records/mx.xz.
mx.csv is 21GB.
They do have " in the files to escape commas so:
mx.py
import csv
import sys
writer = csv.writer(sys.stdout)
with open('mx.csv', 'r') as f:
    reader = csv.reader(f)
    for row in reader:
        writer.writerow([row[0], row[3]])
Would have been better with csvkit: stackoverflow.com/questions/36287982/bash-parse-csv-with-quotes-commas-and-newlines
then:
# uniq not amazing as there are often two or three slightly different records repeated on multiple timestamps, but down to 11 GB
python3 mx.py | uniq > mx-uniq.csv
sqlite3 mx.sqlite 'create table t(d text, m text)'
# 13 GB
time sqlite3 mx.sqlite ".import --csv --skip 1 'mx-uniq.csv' t"

# 41 GB
time sqlite3 mx.sqlite 'create index td on t(d)'
time sqlite3 mx.sqlite 'create index tm on t(m)'
time sqlite3 mx.sqlite 'create index tdm on t(d, m)'

# Remove dupes.
# Rows: 150m
time sqlite3 mx.sqlite <<EOF
delete from t
where rowid not in (
  select min(rowid)
  from t
  group by d, m
)
EOF

# 15 GB
time sqlite3 mx.sqlite vacuum
Let's see what the hits use:
awk -F, 'NR>1{ print $2 }' ../media/cia-2010-covert-communication-websites/hits.csv | xargs -I{} sqlite3 mx.sqlite "select distinct * from t where d = '{}'"
At around 267 total hits, only 84 have MX records, and from those that do, almost all of them have exactly:
smtp.secureserver.net
mailstore1.secureserver.net
with only three exceptions:
dailynewsandsports.com|dailynewsandsports.com
inews-today.com|mail.inews-today.com
just-kidding-news.com|just-kidding-news.com
We need to count out of the totals!
sqlite3 mx.sqlite "select count(*) from t where m = 'mailstore1.secureserver.net'"
which gives, ~18M, so nope, it is too much by itself...
Let's try to use that to reduce av.sqlite from 2013 DNS Census virtual host cleanup a bit further:
time sqlite3 mx.sqlite '.mode csv' "attach 'aiddcu.sqlite' as 'av'" '.load ./ip' "select ipi2s(av.t.i), av.t.d from av.t inner join t as mx on av.t.d = mx.d and mx.m = 'mailstore1.secureserver.net' order by av.t.i asc" > avm.csv
where avm stands for av with mx pruning. This leaves us with only ~500k entries left. With one more figerprint we could do a Wayback Machine CDX scanning scan.
Let's check that we still have most our hits in there:
grep -f <(awk -F, 'NR>1{print $2}' /home/ciro/bak/git/media/cia-2010-covert-communication-websites/hits.csv) avm.csv
At 267 hits we got 81, so all are still present.
secureserver is a hosting provider, we can see their blank page e.g. at: web.archive.org/web/20110128152204/http://emmano.com/. security.stackexchange.com/questions/12610/why-did-secureserver-net-godaddy-access-my-gmail-account/12616#12616 comments:
secureserver.net is the name GoDaddy use as the reverse DNS for IP addresses used for dedicated/virtual server hosting
ns.csv is 57 GB. This file is too massive, working with it is a pain.
We can also cut down the data a lot with stackoverflow.com/questions/1915636/is-there-a-way-to-uniq-by-column/76605540#76605540 and tld filtering:
awk -F, 'BEGIN{OFS=","} { if ($1 != last) { print $1, $3; last = $1; } }' ns.csv | grep -E '\.(com|net|info|org|biz),' > nsu.csv
This brings us down to a much more manageable 3.0 GB, 83 M rows.
Let's just scan it once real quick to start with, since likely nothing will come of this venue:
grep -f <(awk -F, 'NR>1{print $2}' ../media/cia-2010-covert-communication-websites/hits.csv) nsu.csv | tee nsu-hits.csv
cat nsu-hits.csv | csvcut -c 2 | sort | awk -F. '{OFS="."; print $(NF-1), $(NF)}' | sort | uniq -c | sort -k1 -n
As of 267 hits we get:
      1 a2hosting.com
      1 amerinoc.com
      1 ayns.net
      1 dailyrazor.com
      1 domainingdepot.com
      1 easydns.com
      1 frienddns.ru
      1 hostgator.com
      1 kolmic.com
      1 name-services.com
      1 namecity.com
      1 netnames.net
      1 tonsmovies.net
      1 webmailer.de
      2 cashparking.com
     55 worldnic.com
     86 domaincontrol.com
so yeah, most of those are likely going to be humongous just by looking at the names.
The smallest ones by far from the total are: frienddns.ru with only 487 hits, all others quite large or fake hits due to CSV. Did a quick Wayback Machine CDX scanning there but no luck alas.
Let's check the smaller ones:
inews-today.com,2013-08-12T03:14:01,ns1.frienddns.ru
source-commodities.net,2012-12-13T20:58:28,ns1.namecity.com -> fake hit due to grep e-commodities.net
dailynewsandsports.com,2013-08-13T08:36:28,ns3.a2hosting.com
just-kidding-news.com,2012-02-04T07:40:50,jns3.dailyrazor.com
fightwithoutrules.com,2012-11-09T01:17:40,sk.s2.ns1.ns92.kolmic.com
fightwithoutrules.com,2013-07-01T22:46:23,ns1625.ztomy.com
half-court.net,2012-09-10T09:49:15,sk.s2.ns1.ns92.kolmic.com
half-court.net,2013-07-07T00:31:12,ns1621.ztomy.com
Doubt anything will come out of this.
Let's do a bit of counting out of the total:
grep domaincontrol.com ns.csv | awk -F, '{print $1}' | uniq | wc
gives ~20M domain using domaincontrol. Let's see how many domains are in the first place:
awk -F, '{print $1}' ns.csv | uniq | wc
so it accounts for 1/4 of the total.
They appear to piece together data from various sources. This is the most complete historical domain -> IP database we have so far. They don't have hugely more data than viewdns.info, but many times do offer something new. It feels like the key difference is that their data goes further back in the critical time period a bit.
TODO do they have historical reverse IP? The fact that they don't seem to have it suggests that they are just making historical reverse IP requests to a third party via some API?
E.g. searching thefilmcentre.com under historical data at securitytrails.com/domain/thefilmcentre.com/history/al gives the correct IP 62.22.60.55.
But searching the IP 62.22.60.55 is empty and there's no historical data option?
Account creation blacklists common email providers such as gmail to force users to use a "corporate" email address. But using random domains like ciro@cirosantilli.com works fine.
Their data seems to date back to 2008 for our searches.
So far, no new domains have been found with Common Crawl, nor have any existing known domains been found to be present in Common Crawl. Our working theory is that Common Crawl never reached the domains How did Alexa find the domains?
Let's try and do something with Common Crawl.
Unfortunately there's no IP data apparently: github.com/commoncrawl/cc-index-table/issues/30, so let's focus on the URLs.
Hello world:
select * from "ccindex"."ccindex" limit 100;
Data scanned: 11.75 MB
Sample first output line:
#                            2
url_surtkey                  org,whwheelers)/robots.txt
url                          https://whwheelers.org/robots.txt
url_host_name                whwheelers.org
url_host_tld                 org
url_host_2nd_last_part       whwheelers
url_host_3rd_last_part
url_host_4th_last_part
url_host_5th_last_part
url_host_registry_suffix     org
url_host_registered_domain   whwheelers.org
url_host_private_suffix      org
url_host_private_domain      whwheelers.org
url_host_name_reversed
url_protocol                 https
url_port
url_path                     /robots.txt
url_query
fetch_time                   2021-06-22 16:36:50.000
fetch_status                 301
fetch_redirect               https://www.whwheelers.org/robots.txt
content_digest               3I42H3S6NNFQ2MSVX7XZKYAYSCX5QBYJ
content_mime_type            text/html
content_mime_detected        text/html
content_charset
content_languages
content_truncated
warc_filename                crawl-data/CC-MAIN-2021-25/segments/1623488519183.85/robotstxt/CC-MAIN-20210622155328-20210622185328-00312.warc.gz
warc_record_offset           1854030
warc_record_length           639
warc_segment                 1623488519183.85
crawl                        CC-MAIN-2021-25
subset                       robotstxt
So url_host_3rd_last_part might be a winner for CGI comms fingerprinting!
Naive one for one index:
select * from "ccindex"."ccindex" where url_host_registered_domain = 'conquermstoday.com' limit 100;
have no results... data scanned: 5.73 GB
Let's see if they have any of the domain hits. Let's also restrict by date to try and reduce the data scanned:
select * from "ccindex"."ccindex" where
  fetch_time < TIMESTAMP '2014-01-01 00:00:00' AND
  url_host_registered_domain IN (
   'activegaminginfo.com',
   'altworldnews.com',
   ...
   'topbillingsite.com',
   'worldwildlifeadventure.com'
 )
Humm, data scanned: 60.59 GB and no hits... weird.
Sanity check:
select * from "ccindex"."ccindex" WHERE
  crawl = 'CC-MAIN-2013-20' AND
  subset = 'warc' AND
  url_host_registered_domain IN (
   'google.com',
   'amazon.com'
 )
has a bunch of hits of course. Data scanned: 212.88 MB, WHERE crawl and subset are a must! Should have read the article first.
Let's widen a bit more:
select * from "ccindex"."ccindex" WHERE
  crawl IN (
    'CC-MAIN-2013-20',
    'CC-MAIN-2013-48',
    'CC-MAIN-2014-10'
  ) AND
  subset = 'warc' AND
  url_host_registered_domain IN (
    'activegaminginfo.com',
    'altworldnews.com',
    ...
    'worldnewsandent.com',
    'worldwildlifeadventure.com'
 )
Still nothing found... they don't seem to have any of the URLs of interest?
Drug liberalization by Ciro Santilli 40 Updated 2025-07-16
Ciro Santilli supports full legalization of all drugs, because he feels that it would be better overall for the world to have cheaper drugs and more drug addicts, but way, way less organized crime.
These should be extremely controlled of course, with extremely high taxes that puts their price just below the current illegal market, and a complete ban on any positive advertising.
Ciro believes that maybe the government could even go as far as giving free drugs to drug addicts so they don't have to rob to get a fix.
This is notably considering that drug-led organized crime completely dominates and corrupts the politics of many production and trafficking zones, which are already generally poor fucked up places to start with:Ciro's experiences in Brazil such as mentioned at São Remo, the favela next to USP, although much less extreme than the above, also come to mind.
Drug traffic corrupts everything. It prevents development of honest people. It is a cancer, which we have failed time and time a gain to cure. The only cure is to accept the other less insidious of addiction.
Bibliography:
Does not appear to have any reverse IP hits unfortunately: opendata.stackexchange.com/questions/1951/dataset-of-domain-names/21077#21077. Likely only has domains that were explicitly advertised.
We could not find anything useful in it so far, but there is great potential to use this tool to find new IP ranges based on properties of existing IP ranges. Part of the problem is that the dataset is huge, and is split by top 256 bytes. But it would be reasonable to at least explore ranges with pre-existing known hits...
We have started looking for patterns on 66.* and 208.*, both selected as two relatively far away ranges that have a number of pre-existing hits. 208 should likely have been 212 considering later finds that put several ranges in 212.
tcpip_fp:
  • 66.104.
    • 66.104.175.41: grubbersworldrugbynews.com: 1346397300 SCAN(V=6.01%E=4%D=1/12%OT=22%CT=443%CU=%PV=N%G=N%TM=387CAB9E%P=mipsel-openwrt-linux-gnu),ECN(R=N),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=N),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.48: worlddispatch.net: 1346816700 SCAN(V=6.01%E=4%D=1/2%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=1D5EA%P=mipsel-openwrt-linux-gnu),SEQ(SP=F8%GCD=3%ISR=109%TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.49: webworldsports.com: 1346692500 SCAN(V=6.01%E=4%D=9/3%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=5044E96E%P=mipsel-openwrt-linux-gnu),SEQ(SP=105%GCD=1%ISR=108%TI=Z%TS=A),OPS(O1=M550ST11NW6%O2=M550ST11NW6%O3=M550NNT11NW6%O4=M550ST11NW6%O5=M550ST11NW6%O6=M550ST11),WIN(W1=1510%W2=1510%W3=1510%W4=1510%W5=1510%W6=1510),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.50: fly-bybirdies.com: 1346822100 SCAN(V=6.01%E=4%D=1/1%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=14655%P=mipsel-openwrt-linux-gnu),SEQ(TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.104.175.53: info-ology.net: 1346712300 SCAN(V=6.01%E=4%D=9/4%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=50453230%P=mipsel-openwrt-linux-gnu),SEQ(SP=FB%GCD=1%ISR=FF%TI=Z%TS=A),ECN(R=N),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
  • 66.175.106
    • 66.175.106.150: noticiasmusica.net: 1340077500 SCAN(V=5.51%D=1/3%OT=22%CT=443%CU=%PV=N%G=N%TM=38707542%P=mipsel-openwrt-linux-gnu),ECN(R=N),T1(R=N),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
    • 66.175.106.155: atomworldnews.com: 1345562100 SCAN(V=5.51%D=8/21%OT=22%CT=443%CU=%PV=N%DC=I%G=N%TM=5033A5F2%P=mips-openwrt-linux-gnu),SEQ(SP=FB%GCD=1%ISR=FC%TI=Z%TS=A),ECN(R=Y%DF=Y%TG=40%W=1540%O=M550NNSNW6%CC=N%Q=),T1(R=Y%DF=Y%TG=40%S=O%A=S+%F=AS%RD=0%Q=),T2(R=N),T3(R=N),T4(R=N),T5(R=Y%DF=Y%TG=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=),T6(R=N),T7(R=N),U1(R=N),IE(R=N)
Life by Ciro Santilli 40 Updated 2025-07-16
Whatever it is that biology studies.
Let's check relevancy of known hits:
grep -e '208.254.40' -e '208.254.42' 208 | tee 208hits
Output:
208.254.40.95	1355564700	unreachable
208.254.40.95	1355622300	unreachable
208.254.40.96	1334537100	alive, 36342
208.254.40.96	1335269700	alive, 17586

..

208.254.40.127	1355562900	alive, 35023
208.254.40.127	1355593500	alive, 59866
208.254.40.128	1334609100	unreachable
208.254.40.128	1334708100	alive from 208.254.32.214, 43358
208.254.40.128	1336596300	unreachable
The rest of 208 is mostly unreachable.
208.254.42.191	1335294900	unreachable
...
208.254.42.191	1344737700	unreachable
208.254.42.191	1345574700	Icmp Error: 0,ICMP Network Unreachable, from 63.111.123.26
208.254.42.191	1346166900	unreachable
...
208.254.42.191	1355665500	unreachable
208.254.42.192	1334625300	alive, 6672
...
208.254.42.192	1355658300	alive, 57412
208.254.42.193	1334677500	alive, 28985
208.254.42.193	1336524300	unreachable
208.254.42.193	1344447900	alive, 8934
208.254.42.193	1344613500	alive, 24037
208.254.42.193	1344806100	alive, 20410
208.254.42.193	1345162500	alive, 10177
...
208.254.42.223	1336590900	alive, 23284
...
208.254.42.223	1355555700	alive, 58841
208.254.42.224	1334607300	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142
208.254.42.224	1334681100	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142
208.254.42.224	1336563900	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142
208.254.42.224	1344451500	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.138
208.254.42.224	1344566700	unreachable
208.254.42.224	1344762900	unreachable
Let's try with 66. First there way too much data, 9 GB, let's cut it down:
n=66
time awk '$3~/^alive,/ { print $1 }' $n | uniq -c | sed -r 's/^ +//;s/ /,/' | tee $n-up-uniq-c
OK down to 45 MB, now we can work.
grep -e '66.45.179' -e '66.104.169' -e '66.104.173' -e '66.104.175' -e '66.175.106' '66-alive-uniq-c' | tee 66hits
Nah, it's full of holes:
4,66.45.179.187
12,66.45.179.188
2,66.45.179.197
1,66.45.179.202
2,66.45.179.205
2,66.45.179.206
1,66.45.179.207
won't be able to find new ranges here.
From Surely You're Joking, Mr. Feynman chapter O Americano, Outra Vez!:
The people from the airlines were somewhat bored with their lives, strangely enough, and at night they would often go to bars to drink. I liked them all, and in order to be sociable, I would go with them to the bar to have a few drinks, several nights a week.
One day, about 3:30 in the afternoon, I was walking along the sidewalk opposite the beach at Copacabana past a bar. I suddenly got this treMENdous, strong feeling: "That's just what I want; that'll fit just right. I'd just love to have a drink right now!"
I started to walk into the bar, and I suddenly thought to myself, "Wait a minute! It's the middle of the afternoon. There's nobody here, There's no social reason to drink. Why do you have such a terribly strong feeling that you have to have a drink?" - and I got scared.
I never drank ever again, since then. I suppose I really wasn't in any danger, because I found it very easy to stop. But that strong feeling that I didn't understand frightened me. You see, I get such fun out of thinking that I don't want to destroy this most pleasant machine that makes life such a big kick. It's the same reason that, later on, I was reluctant to try experiments with LSD in spite of my curiosity about hallucinations.
One notable drug early teens Ciro consumed was Magic: The Gathering, see also: Section "Magic: The Gathering is addictive".
Quantum interconnect by Ciro Santilli 40 Updated 2025-07-16
"Quantum interconnect" refers to methods for linking up smaller quantum processors into a larger system.
As of 2024, seemingly few organizations developing quantum hardware had actually integrated multiple chips in interconnects as part of their main current roadmap. But many acknowledged that this would be an essential step towards scalable compuation.
The name "quantum interconnect" is likely partly a throwback to classical computer's "chip interconnect".
Sample usages of the term:
Video 1.
Gerhard Rempe - Quantum Dynamics by Max Planck Institute of Quantum Optics
. Source. No technical details of course, but they do show off their optical tables quite a bit!
Pentane interference typically refers to the impact that pentane, a straight-chain hydrocarbon with five carbon atoms, can have on various chemical analyses, particularly in chromatographic methods. In the context of gas chromatography or mass spectrometry, pentane can co-elute with other compounds, potentially leading to inaccurate results or difficulties in identifying and quantifying other analytes.
"Suspension" is a film that was released in 2015. It is a psychological horror film directed by Dave R. Sheppard, featuring a storyline that revolves around a group of friends who find themselves trapped in a series of bizarre and suspenseful situations. The narrative often intertwines elements of fear and the supernatural, typical of the horror genre. The film delves into themes of isolation and psychological strain, often keeping viewers on edge through its suspenseful atmosphere and twists in the storyline.
As of my last update in October 2023, there is no widely recognized entity or subject known as "Suvini Zerboni." It’s possible that it could refer to a person, a brand, or a concept that emerged after that date, or it might be a relatively niche or obscure reference.
Per Carlqvist is a name that could refer to different individuals or contexts, but it's not widely recognized in popular culture, politics, or science as of my last knowledge update in October 2023.
"Swedish nuclear physicists" refers to scientists from Sweden who specialize in the field of nuclear physics, which is the study of atomic nuclei, their constituents, and interactions. This field encompasses a variety of topics, including nuclear decay, nuclear reactions, and the properties of nuclear matter. Sweden has contributed significantly to nuclear physics research and development, particularly through institutions like the Uppsala University, Lund University, and the Swedish National Space Agency.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact