Term symbols for carbon ground state by Ciro Santilli 37 Updated +Created
This example covered for example at Video 1. "Term Symbols Example 1 by TMP Chem (2015)".
Carbon has electronic structure 1s2 2s2 2p2.
For term symbols we only care about unfilled layers, because in every filled layer the total z angular momentum is 0, as one electron necessarily cancels out each other:
So in this case, we only care about the 2 electrons in 2p2. Let's list out all possible ways in which the 2p2 electrons can be.
There are 3 p orbitals, with three different magnetic quantum numbers, each representing a different possible z quantum angular momentum.
We are going to distribute 2 electrons with 2 different spins across them. All the possible distributions that don't violate the Pauli exclusion principle are:
m_l  +1  0 -1  m_L  m_S
     u_ u_ __    1    1
     u_ __ u_    0    1
     __ u_ u_   -1    1
     d_ d_ __    1   -1
     d_ __ d_    0   -1
     __ d_ d_   -1   -1
     u_ d_ __    1    0
     d_ u_ __    1    0
     u_ __ d_    0    0
     d_ __ u_    0    0
     __ u_ d_   -1    0
     __ d_ u_   -1    0
     ud __ __    2    0
     __ ud __    0    0
     __ __ ud   -2    0
where:
For example, on the first line:
m_l  +1  0 -1  m_L  m_S
     u_ u_ __    1    1
we have:
and so the sum of them has angular momentum . So the value of is 1, we just omit the .
TODO now I don't understand the logic behind the next steps... I understand how to mechanically do them, but what do they mean? Can you determine the term symbol for individual microstates at all? Or do you have to group them to get the answer? Since there are multiple choices in some steps, it appears that you can't assign a specific term symbol to an individual microstate. And it has something to do with the Slater determinant. The previous lecture mentions it: www.youtube.com/watch?v=7_8n1TS-8Y0 more precisely youtu.be/7_8n1TS-8Y0?t=2268 about carbon.
youtu.be/DAgEmLWpYjs?t=2675 mentions that is not allowed because it would imply , which would be a state uu __ __ which violates the Pauli exclusion principle, and so was not listed on our list of 15 states.
He then goes for and mentions:
  • S = 1 so can only be 0
  • L = 2 (D) so ranges in -2, -1, 0, 1, 2
and so that corresponds to states on our list:
ud __ __    2    0
u_ d_ __    1    0
u_ __ d_    0    0
__ u_ d_   -1    0
__ __ ud   -2    0
Note that for some we had a two choices, so we just pick any one of them and tick them off off from the table, which now looks like:
 +1  0 -1  m_L  m_S
 u_ u_ __    1    1
 u_ __ u_    0    1
 __ u_ u_   -1    1
 d_ d_ __    1   -1
 d_ __ d_    0   -1
 __ d_ d_   -1   -1
 d_ u_ __    1    0
 d_ __ u_    0    0
 __ d_ u_   -1    0
 __ ud __    0    0
Then for the choices are:
  • S = 2 so is either -1, 0 or 1
  • L = 1 (P) so ranges in -1, 0, 1
so we have 9 possibilities for both together. We again verify that 9 such states are left matching those criteria, and tick them off, and so on.
For the , we have two electrons with spin up. The angular momentum of each electron is , and so given that we have two, the total is , so again we omit and is 1.
Video 1.
Term Symbols Example 1 by TMP Chem (2015)
Source. Carbon atom.
Chemical company by Ciro Santilli 37 Updated +Created
Video game graphics by Ciro Santilli 37 Updated +Created
Tileset by Ciro Santilli 37 Updated +Created
Minimal growth medium by Ciro Santilli 37 Updated +Created
Arcade game by Ciro Santilli 37 Updated +Created

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact