The Rosenbrock function, often referred to as the Rosenbrock's valley or Rosenbrock's banana function, is a non-convex function used as a performance test problem for optimization algorithms. It is defined in two dimensions as: \[ f(x, y) = (a - x)^2 + b(y - x^2)^2 \] where \(a\) and \(b\) are constants.
The Sister Beiter conjecture is a conjecture in the field of number theory, specifically relating to the distribution of prime numbers. It was proposed by the mathematician Sister Mary Beiter, who is known for her work in this area. The conjecture suggests that there is a certain predictable pattern or behavior in the distribution of prime numbers, particularly regarding their spacing and density within the set of natural numbers.
An atomic sentence, also known as an atomic proposition or atomic statement, is a basic declarative sentence in formal logic that does not contain any logical connectives or operators (such as "and," "or," "not," "if...then," etc.). Instead, it expresses a single, indivisible statement that is either true or false. For example, the following are atomic sentences: - "The sky is blue." - "2 + 2 = 4.
The Drinker Paradox is a concept in probability theory and combinatorial geometry that concerns the intersection of random sets in a geometric context. Specifically, it illustrates an interesting property of certain geometric objects and the probabilities associated with their intersections. The paradox can be described as follows: Imagine a circle (often referred to as a "drinker") and consider a number of points (often represented as "drunkards") that are uniformly and randomly distributed on the circumference of this circle.
Boole's inequality is a result in probability theory that provides a bound on the probability of the union of a finite number of events. Specifically, it states that for any finite collection of events \( A_1, A_2, \ldots, A_n \), the probability of the union of these events is bounded above by the sum of the probabilities of each individual event.
P-adic numbers are a system of numbers introduced by the mathematician Kurt Hensel in 1897, which extends the concept of the usual rational numbers. They are constructed in a way that allows for a different notion of "closeness" between numbers, based on a chosen prime number \( p \). The core idea of p-adic numbers is to define a distance between numbers that is based on divisibility by a prime \( p \).
The Chernoff bound is a probabilistic technique used to provide exponentially decreasing bounds on the tail distributions of sums of independent random variables. It is particularly useful in the analysis of algorithms and in fields like theoretical computer science, statistics, and information theory. ### Overview: The Chernoff bound gives us a way to quantify how unlikely it is for the sum of independent random variables to deviate significantly from its expected value.
Retro screening typically refers to the process of reviewing and analyzing past data, practices, or events in a particular field, often to evaluate outcomes, strategies, or methodologies. The term "retro" suggests a backward-looking approach, which can apply to various domains, including healthcare, film, research, and software development. In specific contexts, such as healthcare, retro screening can involve reviewing patient data and outcomes to assess the effectiveness of past treatments or interventions.
Etemadi's inequality is a result in probability theory that provides a bound on the tail probabilities of a non-negative, integrable random variable. Specifically, it is used to give a probabilistic estimate concerning the sum of independent random variables, especially in the context of martingales and stopping times. The inequality states that if \( X \) is a non-negative random variable that is integrable (i.e.
Gauss's inequality, also known as the Gaussian inequality, is a result in probability theory and statistics that provides a bound on the tail probabilities of a normal distribution. Specifically, it states that for a standard normal variable \( Z \) (mean 0 and variance 1), the probability that \( Z \) deviates from its mean by more than a certain threshold can be bounded.
Hoeffding's inequality is a fundamental result in probability theory and statistics that provides a bound on the probability that the sum of bounded independent random variables deviates from its expected value. It is particularly useful in the context of statistical learning and empirical process theory.
The title "University Professor of Natural Philosophy" at Dublin typically refers to a prestigious academic position at Trinity College Dublin. Historically, "natural philosophy" is the term that was used before the modern sciences were fully articulated, encompassing topics like physics, astronomy, and other sciences that study the natural world. The role of the University Professor of Natural Philosophy would generally involve teaching, conducting research, and contributing to the academic community in areas related to the natural sciences.
The Pill Puzzle is a logical reasoning problem often presented as a brain teaser or puzzle. It typically involves a scenario where you have a certain number of pills, some of which are good (safe to take) and some of which are bad (harmful or lethal). The challenge often centers around identifying the good pills from the bad ones using a limited number of tests or a specific set of rules. Here's a common formulation of the Pill Puzzle: - You have a number of pills, say 12.
Béla Krekó is a Hungarian political scientist and expert in the fields of foreign policy, international relations, and political psychology. He is recognized for his work on topics related to Central and Eastern Europe, nationalism, and the impact of public opinion on foreign policy decisions. Krekó may also be involved in academic research, public discourse, and policy analysis.
The Erasmus Smith's Professor of Mathematics is a prestigious academic position at Trinity College Dublin, the University of Dublin, Ireland. Established in 1752 through a bequest from Erasmus Smith, a wealthy merchant and philanthropist, the role is typically filled by a leading mathematician and involves both teaching and research responsibilities. The position is known for its contributions to mathematical sciences and its influence on mathematical education in Ireland.
John Ernst Worrell Keely (1827–1898) was an American inventor and self-proclaimed inventor of a revolutionary power generation system in the late 19th century. He is best known for his claims regarding a machine he developed, which he referred to as the "Keely motor." Keely claimed that his machine could harness a form of energy that he described as "vibrational force," and he asserted that it could produce perpetual motion.
The Bloch sphere is a geometrical representation of the state space of a two-level quantum mechanical system, commonly referred to as a qubit. In quantum mechanics, qubits are the fundamental units of quantum information, analogous to classical bits, but they can exist in superpositions of 0 and 1 states. The Bloch sphere provides a visualization of the pure states of a qubit as points on the surface of a sphere.
In mathematics, particularly in the context of projective geometry, the concept of a hyperplane at infinity is an important idea used to facilitate the study of geometric properties. Here's a breakdown of the concept: 1. **Projective Space**: In projective geometry, we augment the usual Euclidean space by adding "points at infinity". This allows us to handle parallel lines and other geometric relationships more conveniently.
"Hyperconnected space" typically refers to an environment or concept characterized by extensive and seamless connectivity among people, devices, and systems. This term is often used in the context of the Internet of Things (IoT), smart cities, and advanced communications technologies that enable constant interaction and data exchange. Key features of a hyperconnected space include: 1. **Ubiquitous Connectivity**: Every device, object, and individual can connect to the internet and communicate with each other, regardless of location.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





