Basically what register transfer level compiles to in order to achieve a real chip implementation.
After this is done, the final step is place and route.
They can be designed by third parties besides the semiconductor fabrication plants. E.g. Arm Ltd. markets its Artisan Standard Cell Libraries as mentioned e.g. at: web.archive.org/web/20211007050341/https://developer.arm.com/ip-products/physical-ip/logic This came from a 2004 acquisition: www.eetimes.com/arm-to-acquire-artisan-components-for-913-million/, obviously.
The standard cell library is typically composed of a bunch of versions of somewhat simple gates, e.g.:and so on.
- AND with 2 inputs
- AND with 3 inputs
- AND with 4 inputs
- OR with 2 inputs
- OR with 3 inputs
Each of those gates has to be designed by hand as a 3D structure that can be produced in a given fab.
Simulations are then carried out, and the electric properties of those structures are characterized in a standard way as a bunch of tables of numbers that specify things like:Those are then used in power, performance and area estimates.
- how long it takes for electrons to pass through
- how much heat it produces
- www.youtube.com/watch?v=1Z9wo2CzJO8 "Schrodinger equation solved numerically in 3D" by Tetsuya Matsuno. 3D hydrogen atom, code may be hidden in some paper, maybe
- www.youtube.com/playlist?list=PLdCdV2GBGyXM0j66zrpDy2aMXr6cgrBJA "Computational Quantum Mechanics" by Let's Code Physics. Uses a 1D trinket.io.
- www.youtube.com/watch?v=BBt8EugN03Q Simulating Quantum Systems [Split Operator Method] by LeiosOS (2018)
- www.youtube.com/watch?v=86x0_-JGlGQ Simulating the Quantum World on a Classical Computer by Garnet Chan (2016) discusses how modeling only local entanglement can make certain simulations feasible
Two level address translation to make OS emulation more efficient.
Open access at the University of Oxford by Ciro Santilli 35 Updated 2025-01-29 +Created 1970-01-01
Things actually have gotten more and more closed, e.g. of stuff getting paywalled with time:
It appears that things got really bad starting in 2017, possibly when WebLearn was introduced. When things migrated to Canvas, they were closed by default, apparently with any mechanism to publish publicly.
Therefore, they managed to make things more closed than when teachers would just upload to good old
ox.ac.uk/~name
static websites!!Ciro Santilli has also heard that some people in the Mathematical Institute of the University of Oxford opposed to moving away from their Moodle instance precisely because the new options did not support open publishing, so kudos to those people. But most teachers likely don't care and just do whatever is the best internally supported default.
Their "open" video material: podcasts.ox.ac.uk/ A somewhat small part is Creative Commons, but most proprietary. Despite the name "podcasts", they do contain video, it is just a relic.
podcasts.ox.ac.uk/open contains actual Creative Commons only it seems.
It does however appear that professors own their lecture notes, so there some hope maybe: governance.admin.ox.ac.uk/legislation/statute-xvi-property-contracts-and-trusts#collapse1383636
Talks: talks.ox.ac.uk/. Mathematical, Physical and Life Sciences (MPLS) subset: talks.ox.ac.uk/talks/department/id/oxpoints:23232639
The first thing we did was to filter the water samples with a membrane filter that is so fine that not even bacteria can pass through, but water can.
Therefore, after filtration, we would have all particles such as bacteria and larger dirt pieces in the filter.
From the 1 liter in each bottle, we only used 400 ml because previous experiments showed that filtering the remaining 600 ml is very time consuming because the membrane filter gets clogged up.
Therefore, the filtration step allows us to reduce those 400 ml volumes to more manageable Eppendorf tube volumes: Figure 1. "An Eppendorf tube". Reagents are expensive, and lab bench centrifuges are small!
Since the filter is so fine, filtering by gravity alone would take forever, and so we used a vacuum pump to speed thing up!
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
- Internal cross file references done right:
- Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact