Complex coordinate space of dimension 2 by Ciro Santilli 35 Updated +Created
Complex dot product by Ciro Santilli 35 Updated +Created
This section is about the definition of the dot product over , which extends the definition of the dot product over .
The complex dot product is defined as:
E.g. in :
We can see therefore that this is a form, and a positive definite because:
Just like the usual dot product, this will be a positive definite symmetric bilinear form by definition.
Norm induced by the complex dot product by Ciro Santilli 35 Updated +Created
Given:
the norm ends up being:
E.g. in :
Projective elliptic geometry by Ciro Santilli 35 Updated +Created
Each elliptic space can be modelled with a real projective space. The best thing is to just start thinking about the real projective plane.
Normal distribution by Ciro Santilli 35 Updated +Created
Poisson's equation by Ciro Santilli 35 Updated +Created
Generalization of Laplace's equation where the value is not necessarily 0.
Holomorphic function by Ciro Santilli 35 Updated +Created
Being a complex holomorphic function is an extremely strong condition.
The existence of the first derivative implies the existence of all derivatives.
Another extremely strong consequence is the identity theorem.
"Holos" means "entire" in Greek, so maybe this is a reference to the fact that due to the identity theorem, knowing the function on a small open ball implies knowing the function everywhere.
Analytic continuation by Ciro Santilli 35 Updated +Created
visualizing the Riemann hypothesis and analytic continuation by 3Blue1Brown (2016) is a good quick visual non-mathematical introduction is to it.
The key question is: how can this continuation be unique since we are defining the function outside of its original domain?
The answer is: due to the identity theorem.
Good ultra quick visual non-mathematical introduction to the Riemann hypothesis and analytic continuation.
Differential equation by Ciro Santilli 35 Updated +Created
Euler number by Ciro Santilli 35 Updated +Created
Green fluorescent protein by Ciro Santilli 35 Updated +Created
The 3D structure of GFP is so cool. It is so clearly a bottle with a fluorescent bit well isolated right in the middle. Like a little lamp.
Logarithmic integral function by Ciro Santilli 35 Updated +Created
Order of a differential equation by Ciro Santilli 35 Updated +Created
Order of the highest derivative that appears.
Peano existence theorem by Ciro Santilli 35 Updated +Created
Picard-Lindelöf theorem by Ciro Santilli 35 Updated +Created
Numerical method to solve a partial differential equation by Ciro Santilli 35 Updated +Created
The finite element method is one of the most common ways to solve PDEs in practice.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact