Coherence time by Ciro Santilli 37 Updated 2025-07-16
It takes time for the quantum state to evolve. So in order to have a deep quantum circuit, we need longer coherence times.
This post-quantum cryptography competition by NIST is a huge milestone of the field.
It was mind blowing when in 2022, after several years of selection, one of the 7 finalists was broken on a classical computer, not even in a quantum computer! news.ycombinator.com/item?id=30466063 | eprint.iacr.org/2022/214 Breaking Rainbow Takes a Weekend on a Laptop by Ward Beullens. Dude announced he had a break a few days before submission: twitter.com/WardBeullens/status/1492780462028300290 On Twitter. He's so young. Epic.
Edit: and then, after the third round, things were a bit unclear, so they made a fourth round with 4 choices out of the 7 from round 3, and in August 2022 one of the four was broken again on a classic CPU!!! OMG: arstechnica.com/information-technology/2022/08/sike-once-a-post-quantum-encryption-contender-is-koed-in-nist-smackdown/
Man-in-the-middle attack
BB84 is a good first algorithm to look into.
Long story short:
QKD uses quantum mechanics stuff to allow sharing unsnoopable keys: you can detect any snooping and abort communication. Unsnoopability is guaranteed by the known laws of physics, up only to engineering imperfections.
Furthermore, it allows this key distribution without having to physically take a box by car somewhere: once the channel is established, e.g. optical fiber, you can just keep generating perfect keys from it. Otherwise it would be pointless, as you could just drive your one-time pad key every time.
However, the keys likely have a limited rate of generation, so you can't just one-time pad the entire message, except for small text messages. What you would then do is to use the shared key with symmetric encryption.
Therefore, this setup usually ultimately relies on the idea that we believe that symmetric encryption is safer than , even though there aren't mathematical safety proofs of either as of 2020.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact