Tested on Ubuntu 20.04:Add to your and then to use it on a shell e.g. with Python 3.9 create the environment with:and then use it with:Now you can use
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh.bashrc:PATH="$PATH:$HOME/miniconda3/bin"conda create -y -n mytest3.9 python=3.9eval "$(command conda 'shell.bash' 'hook' 2> /dev/null)"
conda activate mytest3.9python and pip normally from inside that mytest3.9 environment.At that time, the exact installer under
latest appears to have been: repo.anaconda.com/miniconda/Miniconda3-py311_23.11.0-2-Linux-x86_64.shThe best package ever is: pypi.org/project/china-dictatorship/ see also: cirosantilli.com/china-dictatorship/mirrors
python3 -m pip install --user virtualenv
virtualenv .venv
. .venv/bin/activate
pip install -r requirements.txtTo run each example and see the output run:
./build.sh
xdg-open out/index.htmlMinimal example. Gives a hint at how boilerplate heavy Sphinx can be!
Basic class example.
Output:With our understanding of the discrete Fourier transform we see clearly that:
sin(t)
fft
real 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
rfft
real 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 0 0 0 0 0 0 0
sin(t) + sin(4t)
fft
real 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10
rfft
real 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 -10 0 0 0 0 0 0- the signal is being decomposed into sinusoidal components
- because we are doing the Discrete Fourier transform of a real signal, for the
fft, so there is redundancy in the. We also understand thatrfftsimply cuts off and only keeps half of the coefficients
A Python wrapper over a bunch of numeric and computer algebra system packages to try and fully replace MATLAB et. al.
For example, their
Quickstart tutorial at: www.sagemath.org/tour-quickstart.html From this we see that they are very opinionated, you don't need to import anything, everything has a pre-defined global name, which is convenient, e.g.:is the 3D vector space over the rationals. This also suggests that they are quite focused on computer algebra as opposed to numerical.
React setups:
As of 2021, last updated 2016, and python 3.5 appears to be mandatory or else:which apparently broke in 3.6: stackoverflow.com/questions/41343263/provide-classcell-example-for-python-3-6-metaclass and
RuntimeError: __class__ not set defining 'AbstractBaseUser' as <class 'django.contrib.auth.base_user.AbstractBaseUser'>. Was __classcell__ propagated to type.__new__?pyenv install fails on Ubuntu 20.10, so... fuck. Workarounds at:but am I in the mood considering that the ancient Django version would require an immediate port anyways? Repo is at Django 1.0, while newest is now already Django 3. The Rails one is broken for the same reason. Fuck 2.
Ubuntu 23.04 install:
sudo apt install rbaseHello world:
R -e 'print("hello world")' Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





