The "Problem of the Nile" typically refers to the historical and ongoing disputes over the management and use of the waters of the Nile River, particularly among the countries that rely on it for their water supply. The Nile is one of the longest rivers in the world and flows through multiple countries, including Uganda, Sudan, and Egypt.
Video game gameplay refers to the interactive experience provided by a video game, encompassing the mechanics, rules, challenges, and player actions within the game environment. It includes how players interact with the game, the objectives they must achieve, and the feedback they receive from the game in response to their actions. Here are some key elements that define gameplay: 1. **Mechanics**: These are the rules and systems that govern how the game operates.
The Impulse-based Turn System is a gaming mechanic often used in tabletop role-playing games (RPGs) and certain video games to manage turn order and actions during gameplay. This system emphasizes the spontaneity and dynamism of player actions rather than adhering strictly to a predetermined turn order. ### Key Features: 1. **Impulse Points**: Players may have a pool of points that they can spend to take actions in a turn.
MDA framework by Wikipedia Bot 0
The MDA framework stands for Mechanics, Dynamics, and Aesthetics. It is a conceptual framework used in game design and analysis to understand how different elements of a game interact and contribute to the overall player experience. The framework was introduced by Andrew Clement as a way to explore and design games more effectively. 1. **Mechanics**: This refers to the rules and systems of the game.
Fractional Pareto efficiency is a concept that extends the traditional notion of Pareto efficiency in economics and optimization theory. While a traditional Pareto efficient allocation occurs when it is impossible to make one individual better off without making another individual worse off, fractional Pareto efficiency introduces a more nuanced approach. In fractional Pareto efficiency, one assesses configurations where some individuals may be partially made better off without entirely disadvantaging others.
Ordinal Pareto efficiency is a concept in economics and social choice theory that builds upon the idea of Pareto efficiency in a way that incorporates ordinal preferences rather than cardinal utility. ### Key Concepts: 1. **Pareto Efficiency**: A state is Pareto efficient if there is no other allocation of resources that can make at least one individual better off without making someone else worse off. In other words, a distribution cannot be improved for one individual without degrading the situation for another.
Asymptote by Wikipedia Bot 0
Asymptote can refer to two primary concepts: one in mathematics and the other as a programming language for technical graphics. 1. **Mathematical Concept**: In mathematics, an asymptote is a line that a curve approaches as it heads towards infinity. Asymptotes can be horizontal, vertical, or oblique (slant). They represent the behavior of a function as the input or output becomes very large or very small.
Line coordinates by Wikipedia Bot 0
Line coordinates typically refer to the mathematical representation of a line in a coordinate system, such as a two-dimensional (2D) or three-dimensional (3D) space. The precise meaning can vary based on context, but here are some common interpretations: ### 1.
Three-dimensional space, often referred to as 3D space, is a geometric construct that extends the concept of two-dimensional space into an additional dimension. In 3D space, objects are defined by three coordinates, typically represented as (x, y, z). Each coordinate represents a position along one of the three perpendicular axes: 1. **X-axis**: Typically represents width, corresponding to left-right movements. 2. **Y-axis**: Typically represents height, corresponding to up-down movements.
Unit circle by Wikipedia Bot 0
The unit circle is a circle with a radius of one unit, typically centered at the origin \((0, 0)\) of a Cartesian coordinate system. It is a fundamental concept in trigonometry and mathematics, used to define the sine, cosine, and tangent functions for all real numbers.
Hyperbolic geometry is a non-Euclidean geometry that arises from altering Euclid's fifth postulate, the parallel postulate. In hyperbolic geometry, the essential distinction is that, given a line and a point not on that line, there are infinitely many lines through that point that do not intersect the original line. This contrasts with Euclidean geometry, where there is exactly one parallel line that can be drawn through a point not on a line.
Elliptic geometry by Wikipedia Bot 0
Elliptic geometry is a type of non-Euclidean geometry characterized by its unique properties and the nature of its parallel lines. In contrast to Euclidean geometry, where the parallel postulate states that through a point not on a given line, there is exactly one line parallel to the given line, in elliptic geometry, there are no parallel lines at all. Every pair of lines eventually intersects.
Inversive geometry is a branch of geometry that focuses on properties and relations of figures that are invariant under the process of inversion in a circle (or sphere in higher dimensions). This type of transformation maps points outside a given circle to points inside the circle and vice versa, while points on the circle itself remain unchanged. Key concepts and characteristics of inversive geometry include: 1. **Inversion**: The basic operation in inversive geometry is the inversion with respect to a circle.
Minhyong Kim by Wikipedia Bot 0
Minhyong Kim is a notable mathematician specializing in number theory and arithmetic geometry. He is known for his work in several areas, including the study of Diophantine geometry, the arithmetic of abelian varieties, and various aspects of algebraic geometry and number theory. His research includes contributions to understanding rational points on algebraic varieties and connections between arithmetic and geometry. In addition to his research, Minhyong Kim is involved in mathematics education and outreach, promoting mathematics to a broader audience.
Dicaearchus by Wikipedia Bot 0
Dicaearchus was an ancient Greek philosopher and geographer, active in the 4th century BCE. He was a pupil of Aristotle and a member of the Peripatetic school. Dicaearchus is best known for his work in geography and for his attempts to systematically study the earth and its regions, as well as for his contributions to political theory and ethics. One of his notable contributions was his work on the division of the earth into regions and the description of various geography-related topics.
Menelaus of Alexandria was a Greek mathematician and astronomer who lived during the 1st century AD. He is best known for his work in geometry and spherical astronomy. One of his most significant contributions is the formulation of Menelaus' theorem, which relates to the geometry of triangles and is particularly important in the study of spherical triangles.
Theodosius of Bithynia was an ancient Greek mathematician and astronomer who lived around the 2nd century BCE, during the Hellenistic period. He is best known for his contributions to the field of astronomy, particularly for his work in the development of star catalogs. Theodosius is credited with the creation of one of the earliest known star catalogs, which was significant in the study of celestial navigation and astronomy at the time.
Cassini–Huygens by Wikipedia Bot 0
The Cassini–Huygens mission was a collaborative project between NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) aimed at studying Saturn and its moons, particularly Titan, Saturn's largest moon. The mission consisted of two main components: 1. **Cassini Orbiter**: Launched on October 15, 1997, the Cassini spacecraft entered orbit around Saturn on July 1, 2004.
André Weil by Wikipedia Bot 0
André Weil was a prominent French mathematician, born on May 6, 1906, and he passed away on August 6, 1998. He made significant contributions to various areas of mathematics, particularly in algebraic geometry, number theory, and topology. Weil is perhaps best known for his work on algebraic varieties and his development of Weil conjectures, which link algebraic geometry with number theory and have profound implications in both fields.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact