Sequoia Capital by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Target Big Markets by Don Valentine (2010)
Source.
Encryption algorithms that run on classical computers that are expected to be resistant to quantum computers.
This is notably not the case of the dominant 2020 algorithms, RSA and elliptic curve cryptography, which are provably broken by Grover's algorithm.
Post-quantum cryptography is the very first quantum computing thing at which people have to put money into.
The reason is that attackers would be able to store captured ciphertext, and then retroactively break them once and if quantum computing power becomes available in the future.
There isn't a shade of a doubt that intelligence agencies are actively doing this as of 2020. They must have a database of how interesting a given source is, and then store as much as they can given some ammount of storage budget they have available.
A good way to explain this to quantum computing skeptics is to ask them:
If I told you there is a 5% chance that I will be able to decrypt everything you write online starting today in 10 years. Would you give me a dollar to reduce that chance to 0.5%?
Post-quantum cryptography is simply not a choice. It must be done now. Even if the risk is low, the cost would be way too great.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact