Suwu herding sheep played by Song Fei (2017)
Source. Stringless guqin fan painting by Feng Chaoran (1943)
Stolen traight from www.silkqin.com/10ideo.htm on silkqin.com:Wind in the pines and a babbling brook are nature's melody. A qin was brought along, but there is no need to play it
Besides being useful in engineering, it was very important historically from a "development of mathematics point of view", e.g. it was the initial motivation for the Fourier series.
Some interesting properties:
- TODO confirm: for a fixed boundary condition that does not depend on time, the solutions always approaches one specific equilibrium function.This is in contrast notably with the wave equation, which can oscillate forever.
- TODO: for a given point, can the temperature go down and then up, or is it always monotonic with time?
- information propagates instantly to infinitely far. Again in contrast to the wave equation, where information propagates at wave speed.
Sample numerical solutions:
www.youtube.com/watch?v=tq7sb3toTww&list=PLxBAVPVHJPcrNrcEBKbqC_ykiVqfxZgNl&index=19 mentions that it is a bit like a dot product but for a tangent vector to a manifold: it measures how much that vector derives along a given direction.
The discovery of the photon was one of the major initiators of quantum mechanics.
Light was very well known to be a wave through diffraction experiments. So how could it also be a particle???
This process "started" in 1900 with Planck's law which was based on discrete energy packets being exchanged as exposed at On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
This ideas was reinforced by Einstein's explanation of the photoelectric effect in 1905 in terms of photon.
In the next big development was the Bohr model in 1913, which supposed non-classical physics new quantization rules for the electron which explained the hydrogen emission spectrum. The quantization rule used made use of the Planck constant, and so served an initial link between the emerging quantized nature of light, and that of the electron.
The final phase started in 1923, when Louis de Broglie proposed that in analogy to photons, electrons might also be waves, a statement made more precise through the de Broglie relations.
This event opened the floodgates, and soon matrix mechanics was published in quantum mechanical re-interpretation of kinematic and mechanical relations by Heisenberg (1925), as the first coherent formulation of quantum mechanics.
It was followed by the Schrödinger equation in 1926, which proposed an equivalent partial differential equation formulation to matrix mechanics, a mathematical formulation that was more familiar to physicists than the matrix ideas of Heisenberg.
Inward Bound by Abraham Pais (1988) summarizes his views of the main developments of the subjectit:
- Planck's on the discovery of the quantum theory (1900);
- Einstein's on the light-quantum (1905);
- Bohr's on the hydrogen atom (1913);
- Bose's on what came to be called quantum statistics (1924);
- Heisenberg's on what came to be known as matrix mechanics (1925);
- and Schroedinger's on wave mechanics (1926).
Bibliography:
By writing in English you reach more people.
English is the de-facto Lingua Franca of the second half of the 20th Century, it is the new lingua franca, the new Latin, and there is no escaping it.
Students who don't know English will never do anything truly useful in science and technology. So it is pointless to teach them anything (besides English itself).
There are unlisted articles, also show them or only show them.