The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
- spacetime symmetry: act with the Poincaré group on the Four-vector spacetime inputs of the field itself, i.e. transforming into
- internal symmetry: act on the output of the field, i.e.:
From defining properties of elementary particles:
- spacetime:
- internal
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
Vs metric:
- a norm is the size of one element. A metric is the distance between two elements.
- a norm is only defined on a vector space. A metric could be defined on something that is not a vector space. Most basic examples however are also vector spaces.
Members of the orthogonal group.
Does not require entangled particles, unlike E91 which does.
en.wikipedia.org/w/index.php?title=Quantum_key_distribution&oldid=1079513227#BB84_protocol:_Charles_H._Bennett_and_Gilles_Brassard_(1984) explains it well. Basically:
- Alice and Bob randomly select a measurement basis of either 90 degrees and 45 degrees for each photon
- Alice measures each photon. There are two possible results to either measurement basis: parallel or perpendicular, representing values 0 or 1. TODO understand better: weren't the possible results supposed to be pass or non-pass? She writes down the results, and sends the (now collapsed) photons forward to Bob.
- Bob measures the photons and writes down the results
- Alice and Bob communicate to one another their randomly chosen measurement bases over the unencrypted classic channel.This channel must be authenticated to prevent man-in-the-middle. The only way to do this authentication that makes sense is to use a pre-shared key to create message authentication codes. Using public-key cryptography for a digital signature would be pointless, since the only advantage of QKD is to avoid using public-key cryptography in the first place.
- they drop all photons for which they picked different basis. The measurements of those which were in the same basis are the key. Because they are in the same basis, their results must always be the same in an ideal system.
- if there is an eavesdropper on the line, the results of measurements on the same basis can differ.Unfortunately, this can also happen due to imperfections in the system.Alice and Bob must decide what level of error is above the system's imperfections and implies that an attacker is listening.
Explains how it is possible that everyone observes the same speed of light, even if they are moving towards or opposite to the light!!!
This was first best observed by the Michelson-Morley experiment, which uses the movement of the Earth at different times of the year to try and detect differences in the speed of light.
This leads leads to the following conclusions:
- to length contraction and time dilation
- the speed of light is the maximum speed anything can reach
All of this goes of course completely against our daily Physics intuition.
The "special" in the name refers to the fact that it is a superset of general relativity, which also explains gravity in a single framework.
Since time and space get all messed up together, you have to be very careful to understand what it means to say "I observed this to happen over there at that time", otherwise you will go crazy. A good way to think about is this:
- use Einstein synchronization to setup a bunch of clocks for every position in your frame of reference
- on every point of space, you put a little detector which records events and the time of the event
- each detector can only detect events locally, i.e. events that happen very close to the detector
- then, after the event, the detectors can send a signal to you, who is sitting at the origin, telling you what they detected
mlcommons.org/en/ Their homepage is not amazingly organized, but it does the job.
Benchmark focused on deep learning. It has two parts:Furthermore, a specific network model is specified for each benchmark in the closed category: so it goes beyond just specifying the dataset.
Results can be seen e.g. at:
- training: mlcommons.org/en/training-normal-21/
- inference: mlcommons.org/en/inference-datacenter-21/
And there are also separate repositories for each:
E.g. on mlcommons.org/en/training-normal-21/ we can see what the the benchmarks are:
Dataset | Model |
---|---|
ImageNet | ResNet |
KiTS19 | 3D U-Net |
OpenImages | RetinaNet |
COCO dataset | Mask R-CNN |
LibriSpeech | RNN-T |
Wikipedia | BERT |
1TB Clickthrough | DLRM |
Go | MiniGo |
He and John Archibald Wheeler presented the Wheeler-Feynman absorber theory.
Unlisted articles are being shown, click here to show only listed articles.