A slow development test cycle will kill your software.
New developers won't want to learn your project, because they would rather shoot themselves.
This means that build time, and the time to run tests, must be short.
5 seconds to rebuild is the maximum upper limit.
Of course, at some point software gets large enough that things won't fit anymore in 5 seconds. But then you must have either some kind of build caching, or options to do partial builds/tests that will bring things down to that 5 second mark.
You also have to spend some time profiling execution and build from scratch times.
A slow build from scratch will mean that your continuous integration costs a lot, money that could be invested in a new developer!
It also means that people won't bother to reproduce bugs on given commits, or bisect stuff.
One anecdote comes to mind. Ciro Santilli was trying to debug something, and more experience colleague came over.
To reproduce a problem, ciro was running one command, wait 5 seconds, run a second command, wait 5 seconds, run a third command:
cmd1
# wait 5 seconds
cmd2
# wait 5 seconds
cmd3
The first thing the colleague said: join those three commands into one:And so, Ciro was enlightened.
cmd1;cmd2;cmd3
Ciro Santilli invented this term, it refers to mechanisms in which you put an animal in a virtual world that the animal can control, and where you can measure the animal's outputs.
- MouseGoggles www.researchsquare.com/article/rs-3301474/v1 | twitter.com/hongyu_chang/status/1704910865583993236
- Fruit fly setup from Penn State: scitechdaily.com/secrets-of-fly-vision-for-rapid-flight-control-and-staggeringly-fast-reaction-speed/
The only isotope found on Earth because it occurs as part of the uranium 238 decay chain, i.e., it is not a primordial nuclide.
Interestingly it is a bit less stable than other isotopesL such as Polonium-208 (3 y) and Polonium-209 (124 y), but those aren't in any Earthly radioactive chain so they don't show up on Earth.
A really good option to store educational media such as images and video!
Shame that like the rest of Wikimedia, their interface is so clunky and lacking obvious features.
Gun-type fission weapons are the simplest approach and they work with Uranium-235 bombs as you can ignite it with just one explosion.
But Gun-type fission weapons don't work with plutonium, and weapon grade Plutonium is cheaper than weapon grade Uranium, so it wasn't much used.
More generic PCR information at: Section "Polymerase chain reaction".
Because it is considered the less interesting step, and because it takes quite some time, this step was done by the event organizers between the two event days, so participants did not get to take many photos.
PCR protocols are very standard it seems, all that biologists need to know to reproduce is the time and temperature of each step.
We did 35 cycles of:
- 94˚C for 30 seconds
- 60˚C for 30 seconds
- 72˚C for 45 seconds
This process used a Marshal Scientific MJ Research PTC-200 Thermal Cycler:
We added PCR primers for regions that surround the 16S DNA. The primers are just bought from a vendor, and we used well known regions are called 27F and 1492R. Here is a paper that analyzes other choices: academic.oup.com/femsle/article/221/2/299/630719 (archive) "Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment" by Yuichi Hongoh, Hiroe Yuzawa, Moriya Ohkuma, Toshiaki Kudo (2003)
One cool thing about the PCR is that we can also add a known barcode at the end of each primer as shown at Code 1. "PCR diagram".
This means that we bought a few different versions of our 27F/1492R primers, each with a different small DNA tag attached directly to them in addition to the matching sequence.
This way, we were able to:
- use a different barcode for samples collected from different locations. This means we
- did PCR separately for each one of them
- for each PCR run, used a different set of primers, each with a different tag
- the primer is still able to attach, and then the tag just gets amplified with the rest of everything!
- sequence them all in one go
- then just from the sequencing output the barcode to determine where each sequence came from!
Input: Bacterial DNA (a little bit)
... --- 27S --- 16S --- 1492R --- ...
|||
|||
vvv
Output: PCR output (a lot of)
Barcode --- 27S --- 16S --- 1492R
Finally, after purification, we used the Qiagen QIAquick PCR Purification Kit protocol to purify the generated from unwanted PCR byproducts.
Uranium emits them, you can see their mass to charge ratio under magnetic field and so deduce that they are electrons.
Caused by weak interaction TODO why/how.
The emitted electron kinetic energy is random from zero to a maximum value. The rest goes into a neutrino. This is how the neutrino was first discovered/observed indirectly. This is well illustrated in a decay scheme such as Figure "caesium-137 decay scheme".
Ciro Santilli finds it interesting that radioactive decay basically kickstarted the domain of nuclear physics by essentially providing a natural particle accelerator from a chunk of radioactive element.
The discovery process was particularly interesting, including Henri Becquerel's luck while observing phosphorescence, and Marie Curie's observation that the uranium ore were more radioactive than pure uranium, and must therefore contain other even more radioactive substances, which lead to the discovery of polonium (half-life 138 days) and radium (half-life 1600 years).
Discovered by Marie Curie when she noticed that there was some yet unknown more radioactive element in their raw samples, after uranium and polonium, which she published 6 months prior, had already been separated. Published on December 1989 as: Section "Sur une nouvelle substance fortement radio-active, contenue dans la pechblende".
The uranium 238 decay chain is the main source of naturally occurring radium.
Refinement of the Bohr model that starts to take quantum angular momentum into account in order to explain missing lines that would have been otherwise observed TODO specific example of such line.
They are not observe because they would violate the conservation of angular momentum.
Introduces the azimuthal quantum number and magnetic quantum number.
TODO confirm year and paper, Wikipedia points to: zenodo.org/record/1424309#.yotqe3xmjhe
Contains the University of Cambridge, that's about it really, from that everything follows.
The city appear to exist there because it was a convenient crossing of the Cam. It also lies near the start of the ancient navigable section TODO towards north or south? Castle hill also offered a convenient fortification location near the river, and is part of the reason for the early Roman settlement. The original bridge was presumably in the current Magnalene bridge, just under the castle hill.
TODO why did the University of Oxford scholars flee to after the The hanging of the clerks in 1209? Why not anywhere else?
Gridworld version of DeepMind Lab.
Open sourced in 2020: analyticsindiamag.com/deepmind-just-gave-away-this-ai-environment-simulator-for-free/
A tiny paper: arxiv.org/pdf/2011.07027.pdf
TODO get running, publish demo videos on YouTube.
At twitter.com/togelius/status/1328404390114435072 called out on DeepMind Lab2D for not giving them credit on prior work!As seen from web.archive.org/web/20220331022932/http://gvgai.net/ though, DeepMind sponsored them at some point.
This very much looks like like GVGAI which was first released in 2014, been used in dozens (maybe hundreds) of papers, and for which one of the original developers was Tom Schaul at DeepMind...
There are unlisted articles, also show them or only show them.