Ciro Santilli believes that molecular biology technologies will be a large part of the next big things as shown at: Section "Molecular biology technologies".
Bibliography:
- www.youtube.com/watch?v=mS563_Teges&list=PLQbPquAyEw4dQ3zOLrdS1eF_KJJbUUyBx Biophysical Techniques Course 2022 by the MRC Laboratory of Molecular Biology. Holy crap that playlist is a tour de force of molecular biology techniques in 2022!
This is good. But it misses some key operations, so much so that makes Ciro not want to learn/use it daily.
The best instrumental songs: Section "The best Chinese traditional instrumental music"
In the process of moving out of: cirosantilli.com/china-dictatorship/music
Bibliography:
- Ciro Santilli's YouTube playlist: www.youtube.com/playlist?list=PLcZOZrP1P_V5J2P3ogZNpya0BAuPEgyuE
- Reddit:
- www.reddit.com/r/classicalmusic/comments/op54d5/traditional_chinese_music_recommendations_helpful/ "Traditional Chinese Music Recommendations & Helpful Sources" by
_AsyA_
(2021). This user knows a bit as shown in description. - www.reddit.com/r/China/comments/1ejy8jw/how_to_get_into_traditionalclassical_chinese_music/ "How to get into traditional/classical chinese music?" by Ultimate_CockSucker (2024)
- www.reddit.com/r/Chinese/comments/150sf4y/what_are_some_really_good_traditional_chinese/ "What are some really good Traditional Chinese music artists?" by Flimsy-Assumption513 (2023)
- www.reddit.com/r/classicalmusic/comments/op54d5/traditional_chinese_music_recommendations_helpful/ "Traditional Chinese Music Recommendations & Helpful Sources" by
The best open source implementation as of 2020 seems to be: Mozilla rr.
There are two cases:
- (topological) manifolds
- differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
- Original problem posed, for topological manifolds.AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.
- for differential manifolds:Counter examples are called exotic spheres.Totally unpredictable count table:is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??
This is not a label that Ciro Santilli likes to give lightly. But maybe sometimes, it is inevitable.
Bibliography:
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:lagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
- compound Atwood machine. Here, we can use the coordinates as the heights of masses relative to the axles rather than absolute heights relative to the ground
- double pendulum, using two angles. The Lagrangian approach is simpler than using Newton's laws
- two-body problem, use the distance between the bodies
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:This produces a system of partial differential equations with:
- equations
- unknown functions
- at most second order derivatives of . Those appear because of the chain rule on the second term.
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
- the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
- after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: S.
TODO advantages:
- physics.stackexchange.com/questions/254266/advantages-of-lagrangian-mechanics-over-newtonian-mechanics on Physics Stack Exchange, fucking closed question...
- www.quora.com/Why-was-Lagrangian-formalism-needed-in-the-presence-of-Newtonian-formalism
- www.researchgate.net/post/What_is_the_advantage_of_Lagrangian_formalism_over_Hamiltonian_formalism_in_QFT
Bibliography:
- www.physics.usu.edu/torre/6010_Fall_2010/Lectures.html Physics 6010 Classical Mechanics lecture notes by Charles Torre from Utah State University published on 2010,
- Classical physics only. The last lecture: www.physics.usu.edu/torre/6010_Fall_2010/Lectures/12.pdf mentions Lie algebra more or less briefly.
- www.damtp.cam.ac.uk/user/tong/dynamics/two.pdf by David Tong
Euler-Lagrange equation explained intuitively - Lagrangian Mechanics by Physics Videos by Eugene Khutoryansky (2018)
Source. Well, unsurprisingly, it is exactly what you can expect from an Eugene Khutoryansky video.The website was dead as of February 2025. Last archive: web.archive.org/web/20240418004442/http://www.themathgenome.com/ Pings:They were seeking help on May 2024:
so its likely the followup death. LinkedIn post gives basic stack: MERN stack, Heroku, Supabase/MongoDB Atlas.
A discussion on the Lean Zulip: leanprover.zulipchat.com/#narrow/stream/113488-general/topic/The.20Math.20Genome.20Project/near/352639129. Lean people are not convinced about the model in general it seems however.
TODO not viewable without login?
Has conjectures feature.
Built by this dude John Mercer:He must be independently wealthy or something to do such a project? What a hero. But he seems to have jobs. On the side? Hardcore.
Ciro Santilli asked: discord.com/channels/1096393420408360989/1096393420408360996/1137047842159079474Owner:So apparently there will be proof checking, but no dependencies between proofs, you still have to pull request everything back and face the pain.
Does the website actually automatically check the formal proofs, or is this intended to be implemented at some point? And if yes, is it intended to allow proofs to depend on other proofs of the website (possibly by other people)
Hi Ciro, yes we will be releasing in-browser proof assistant environments/checkers (e.g. Lean). Our goal is not to replace the underlying open-source repos (e.g. Mathlib) so the main dependency will be on the current repos; then when statement formalizations and proofs come in and are certified they can be PR'd to the respective repos. So we will be the source of truth for the informal latex code but only a stepping stone and orchestration layer on the way to the respective formal libraries.
Bibliography:
Unlisted articles are being shown, click here to show only listed articles.