Published on the session reports of the Royal Prussian Academy of Sciences at Berlin 1918 page 464.
Is about Maxwell's equations in curved spacetime, and notably introduces gauge theory.
Viewable for free at: archive.org/details/mobot31753002089727/page/464/mode/2up.
As of 2019, the more formal name for particle physics, which is notably missing general relativity to achieve the theory of everything.
cds.cern.ch/record/799984/files/0401010.pdf The Making of the Standard Model by Steven Weinberg mentions three crucial elements that made up the standard model post earlier less generalized quantum electrodynamics understandings
Synthesizes MIDI input. vmpk +
aconnect
+ Advanced Linux Sound Architecture hello world: askubuntu.com/questions/34391/virtual-midi-piano-keyboard-setup/1298026#1298026Supports only very basic effects it seems: chorus effect and reverberation. The main way to add instruments to it is via SoundFont files.
Non-invertible are excluded "because" otherwise it would not form a group (every element must have an inverse). This is therefore the largest possible group under matrix multiplication, other matrix multiplication groups being subgroups of it.
Besides the understandable Wikipedia definition, Video "Simple Groups - Abstract Algebra by Socratica (2018)" gives an understandable one:
Given a finite group and a simple group , find all groups such that is a normal subgroup of and .
We don't really know how to make up larger groups from smaller simple groups, which would complete the classification of finite groups:
In particular, this is hard because you can't just take the direct product of groups to retrieve the original group: Section "Relationship between the quotient group and direct products".
In the classification of finite simple groups, groups of Lie type are a set of infinite families of simple lie groups. These are the other infinite families besides te cyclic groups and alternating groups.
A decent list at: en.wikipedia.org/wiki/List_of_finite_simple_groups, en.wikipedia.org/wiki/Group_of_Lie_type is just too unclear. The groups of Lie type can be subdivided into:
- Chevalley groups
- TODO the rest
The first in this family discovered were a subset of the Chevalley groups by Galois: , so it might be a good first one to try and understand what it looks like.
TODO understand intuitively why they are called of Lie type. Their names , seem to correspond to the members of the classification of simple Lie groups which are also named like that.
But they are of course related to Lie groups, and as suggested at Video "Yang-Mills 1 by David Metzler (2011)" part 2, the continuity actually simplifies things.
Combination of electromagnetism and general relativity. Unlike combining quantum mechanics and general relativity, this combination was easier.
TODO any experiments of interest at all?
So simple!! You can either:
- cut two holes and glue a handle. This is easy to visualize as it can be embedded in : you just get a Torus, then a double torus, and so on
- cut a single hole and glue a Möbius strip in it. Keep in mind that this is possible because the Möbius strip has a single boundary just like the hole you just cut. This leads to another infinite family that starts with:
You can glue a Mobius strip into a single hole in dimension larger than 3! And it gives you a Klein bottle!
Intuitively speaking, they can be sees as the smooth surfaces in N-dimensional space (called an embedding), such that deforming them is allowed. 4-dimensions is enough to embed cover all the cases: 3 is not enough because of the Klein bottle and family.
Equivalence between Lagrangian and Hamiltonian formalisms Updated 2025-05-23 +Created 1970-01-01
If your kids are about to starve, fine, do it.
But otherwise, Ciro Santilli will not, ever, spend his time drilling programmer competition problems to join a company, life is too short for that.
Life is too short for that. Companies must either notice that you can make amazing open source software projects or contributions, and hire you for that, or they must fuck off.
There are unlisted articles, also show them or only show them.