Uncensored Onion service search engine Updated +Created
This is where "fun" stuff is likely to be.
Diffraction grating Updated +Created
EeroQ Updated +Created
Atom Computing Updated +Created
These people are cool.
They use optical tweezers to place individual atoms floating in midair, and then do stuff to entangle their nuclear spins.
PCIe Updated +Created
All the financial advice you’ll ever need fits on a single index card Updated +Created
This is a good concept. For the ammount most people save, having a simple and easy to apply investment thesis is the best way to go.
Video 1.
All the financial advice you’ll ever need fits on a single index card
. Source.
@cirosantilli/_file/python/python/ast_cheat.py Updated +Created
Azimuthal quantum number Updated +Created
The direction however is not specified by this number.
To determine the quantum angular momentum, we need the magnetic quantum number, which then selects which orbital exactly we are talking about.
Next.js Updated +Created
Framework built on top of React.
Officially recommended by React[ref]:
Recommended Toolchains
If you’re building a server-rendered website with Node.js, try Next.js.
Basically what this does is to get server-side rendering just working by React, including hydration, which is a good thing.
Next.js sends the first pre-rendered HTML page along with the JavaScript code. Then, JavaScript page switches just load the API data.
Next.js does this nicely by forcing you to provide page data in a serialized JSON format, even when rendering server-side (e.g. the return value of getServerSideProps). This way, it is also able to provide either the full HTML, or just the JSON.
Some general downsides:
  • it does feel like they don't document deployment very well however, especially non-Vercel options, which is the company behind Next.js. I'm unable to find how to use a non Vercel CDN with ISR supposing that is possible.
  • Next.js is very opinionated, and like any opinionated library it is sometimes hard to know why something is/isn't happening, and sometimes it is hard/impossible to do what you want with it unless they add support. They have done good progress, but even as of 2022, some aspects just feel so immature, some major-looking use cases are not very well done.
In theory, Next.js could be the "ultimate frontend framework". It does have a lot of development difficulties that need to be ironed out, but the general concepts, and things it tries to integrate, including e.g. webpack, TypeScript, etc. are good. Maybe the question is when will someone put it together with an amazing backend library and dominate and finally put an end to the infinite number of Js Frameworks!
In order to offer its amazing features, Next.js is also extremely opinionated, which means that if something wasn't designed to be possible, it basically isn't.
No prerender with custom server? It forces you to write your API with next as well? Or does it mean something else?
TODO can it statically generate pages that are created at runtime? E.g. if I create a new blog post, will it automatically upload a static page? It seems that yes, and that this is exactly what Incremental Static Regeneration means:However, Ciro can't find any mention of how to specify where the pages are uploaded to... this is pat of the non-Vercel deployment problem.
Can't ISR prerenter by URL query parameters:That plus the requirement to have one page per file under pages/ leads to a lot of useless duplication, because then you are forced to place the URL parameters on the pathnames.
"Module not found: Can't resolve 'fs'" Hell. The main reason this happens seems to be the that in a higher order component, webpack can't determine if callbacks use the require or not to remove it from frontend code. Fully investigated and solved at:
Overviews:
Human mitochondrion Updated +Created
Great doubt Updated +Created
The type of feeling of confusion and distrut for your sense that some Koans attempt to instill.
Ciro Santilli's preferred version of it is physics and the illusion of life.
Some notable references:
Market liquidity Updated +Created
Existence of the matrix logarithm Updated +Created
en.wikipedia.org/wiki/Logarithm_of_a_matrix#Existence mentions it always exists for all invertible complex matrices. But the real condition is more complicated. Notable counter example: -1 cannot be reached by any real .
The Lie algebra exponential covering problem can be seen as a generalized version of this problem, because
  • Lie algebra of is just the entire
  • we can immediately exclude non-invertible matrices from being the result of the exponential, because has inverse , so we already know that non-invertible matrices are not reachable
James Howells Updated +Created
MJCF Updated +Created
JavaScript memory usage benchmark Updated +Created
In this section we will use the file nodejs/bench_mem.js, tests are run on Node.js v16.14.2 from NVM, Ubuntu 21.10, on Lenovo ThinkPad P51 (2017) which has 32 GB RAM.
A C hello world with an infinite loop at the end has:
  • 2.7 MB
  • 770 KB
For a Node.js infinite loop nodejs/infinite_loop.js
topp infinite_loop.js
This gives approximately:
  • RSS: 20 MB
  • VSZ: 230 MB
Adding a single hello world to it as in nodejs/infinite_hello.js and running:
topp infinite_hello.js
leads to:
  • RSS: 26 MB
  • VSZ: 580 MB
We understand that Node.js preallocates VSZ wildly. No big deal, but it does mean that VSZ is a useless measure for Node.js.
Forcing garbage collection as in nodejs/infinite_hello.js brings it down to 20 MB however:
topp node --expose-gc infinite_hello_gc.js
Finally let's see a baseline for process.memoryUsage nodejs/infinite_memoryusage.js:
node --expose-gc infinite_memoryusage.js
which gives initially:
{
  rss: 23851008,
  heapTotal: 6987776,
  heapUsed: 3674696,
  external: 285296,
  arrayBuffers: 10422
}
but after a few seconds randomly jumps to:
{
  rss: 26005504,
  heapTotal: 9084928,
  heapUsed: 3761240,
  external: 285296,
  arrayBuffers: 10422
}
so we understand that
  • heapUsed seems constant at 3.7 MB
  • heapTotal is a very noisy, as it starts at 7 MB, but randomly jumps to 9 MB at one point without apparent reason
Now let's run our main test program.
First a baseline case with an array of length 1:
node --expose-gc bench_mem.js n 1
This gives the same results as node --expose-gc infinite_memoryusage.js. The same result is obtained by doing:
a = undefined
with:
node --expose-gc bench_mem.js dealloc
Not let's vary the size of n a bit with:
node --expose-gc bench_mem.js n N
which gives:
NheapUsedheapTotalrssheapUsed per elemrss per elem
1 M14 MB48 MB56 MB1030
10 M122 MB157 MB176 MB1815
100 M906 MB940 MB960 MB99.3
"rss per elem" is calculated as: rss - 26 MB, where 26 MB is the baseline RSS seen on n 1.
Similarly "heapUsed per elem" deduces the 4 MB (approximation of the above 3.7 MB) seen on n 1.
Note that to reach MAX_SAFE_INTEGER we would need 8 bytes per elem worst case.
Everything below 100 million (8) is therefore very memory wasteful in terms of RSS.
If we use Int32Array typed array buffers instead of a simple Array:
node --expose-gc bench_mem.js array-buffer n N
we see that the memory is now, unsurprisingly, accounted for under arrayBuffers, e.g. for N 1 million:
{
  rss: 31776768,
  heapTotal: 6463488,
  heapUsed: 3674520,
  external: 4285296,
  arrayBuffers: 4010422
}
Results for different N:
|| N
|| `arrayBuffers`
|| `rss`
|| `rss` per elem

| 1 M
| 4 MB
| 31 MB
| 5

| 10 M
| 40 MB
| 67 MB
| 4.6

| 100 M
| 40 MB
| 427 MB
| 4
We see therefore that typed arrays are much closer to what they advertise (4 bytes per element), even for smaller element counts, as expected.
Now let's try one million objects of type { a: 1, b: -1 }:
node --expose-gc bench_mem.js obj
gives:
{
  rss: 138969088,
  heapTotal: 105246720,
  heapUsed: 70103896,
  external: 285296,
  arrayBuffers: 10422
}
Disaster! Memory usage is up to 70 MB! Why?? We were expecting only about 24, 4 baseline + 2 * 10 for each million int?!
And now an equivalent version using class:
node --expose-gc bench_mem.js class
gives the same result.
Let's try Array:
node --expose-gc bench_mem.js arr
is even worse at 78 MB!! OMG why.
{
  rss: 164597760,
  heapTotal: 129363968,
  heapUsed: 78117008,
  external: 285296,
  arrayBuffers: 10422
}
Let's change the number of fields on the object? First as a sanity check:
node --expose-gc bench_mem.js obj 2
produces as expected the smae result as:
node --expose-gc bench_mem.js obj
so adding properties one by one doesn't change anything from creating the literal all at once. Good.
Now:
node --expose-gc bench_mem.js obj N
gives heapUsed:
  • 1: 70M
  • 2: 70M
  • 3: 70M
  • 4: 70M
  • 5: 110M
  • 6: 110M
  • 7: 110M
  • 8: 134M
  • 9: 134M
  • 10: 134M
  • 11: 158M

Unlisted articles are being shown, click here to show only listed articles.