Plant by Ciro Santilli 37 Updated 2025-07-16
Formal name: "plantae".
Matrix mechanics by Ciro Santilli 37 Updated 2025-07-16
It is apparently more closely related to the ladder operator method, which is a more algebraic than the more analytical Schrödinger equation.
It appears that this formulation makes the importance of the Poisson bracket clear, and explains why physicists are so obsessed with talking about position and momentum space. This point of view also apparently makes it clearer that quantum mechanics can be seen as a generalization of classical mechanics through the Hamiltonian.
Inward Bound by Abraham Pais (1988) chapter 12 "Quantum mechanics, an essay" part (c) "A chronology" has some ultra brief, but worthwhile mentions of matrix mechanics and the commutator.
Photon by Ciro Santilli 37 Updated 2025-07-16
Initially light was though of as a wave because it experienced interference as shown by experiments such as:
But then, some key experiments also start suggesting that light is made up of discrete packets:and in the understanding of the 2020 Standard Model the photon is one of the elementary particles.
This duality is fully described mathematically by quantum electrodynamics, where the photon is modelled as a quantized excitation of the photon field.
EDA company by Ciro Santilli 37 Updated 2025-07-16
The main ones as of 2020 are:
There are several choices of electromagnetic four-potential that lead to the same physics.
E.g. thinking about the electric potential alone, you could set the zero anywhere, and everything would remain be the same.
The Lorentz gauge is just one such choice. It is however a very popular one, because it is also manifestly Lorentz invariant.
RNA-Seq by Ciro Santilli 37 Updated 2025-07-16
Sequencing the DNA tells us what the organism can do. Sequencing the RNA tells us what the organism is actually doing at a given point in time. The problem is not killing the cell while doing that. Is it possible to just take a chunk of the cell to sequence without killing it maybe?
This is an extremely widely used technique as of 2020 and much earlier.
If allows you to amplify "any" sequence of choice (TODO length limitations) between a start and end sequences of interest which you synthesize.
If the sequence of interest is present, it gets amplified exponentially, and you end up with a bunch of DNA at the end.
You can then measure the DNA concentration based on simple light refraction methods to see if there is a lot of DNA or not in the post-processed sample.
One common problem that happens with PCR if you don't design your primers right is: en.wikipedia.org/wiki/Primer_dimer
Sometime it fails: www.reddit.com/r/molecularbiology/comments/1kouomw/when_your_pcr_fails_again_and_you_start/
Nothing humbles you faster than a bandless gel. One minute you’re a scientist, the next you’re just a pipette-wielding wizard casting spells that don’t work. Meanwhile, physicists are out there acting like gravity always behaves. Smash that upvote if your reagents have ever gaslit you.
and a comment:
PCR = Pray, Cry, Repeat
Note that:
and for that to be true for all possible and then we must have:
i.e. the matrix inverse is equal to the transpose.
Conversely, if:
is true, then
These matricese are called the orthogonal matrices.
TODO is there any more intuitive way to think about this?
Synthesizing the DNA itself is not the only problem however.
You then have to get that DNA into a working living form state so that normal cell processes can continue:

Unlisted articles are being shown, click here to show only listed articles.