Algebra Updated +Created
Not to be confused with algebra over a field, which is a particular algebraic structure studied within algebra.
Baker-Campbell-Hausdorff formula Updated +Created
Solution for given and of:
where is the exponential map.
If we consider just real number, , but when X and Y are non-commutative, things are not so simple.
Furthermore, TODO confirm it is possible that a solution does not exist at all if and aren't sufficiently small.
This formula is likely the basis for the Lie group-Lie algebra correspondence. With it, we express the actual group operation in terms of the Lie algebra operations.
Notably, remember that a algebra over a field is just a vector space with one extra product operation defined.
Vector spaces are simple because all vector spaces of the same dimension on a given field are isomorphic, so besides the dimension, once we define a Lie bracket, we also define the corresponding Lie group.
Since a group is basically defined by what the group operation does to two arbitrary elements, once we have that defined via the Baker-Campbell-Hausdorff formula, we are basically done defining the group in terms of the algebra.
Complex number Updated +Created
An ordered pair of two real numbers with the complex addition and multiplication defined.
Forms both a:
Division algebra Updated +Created
Infinitesimal generator Updated +Created
Elements of a Lie algebra can (should!) be seen a continuous analogue to the generating set of a group in finite groups.
For continuous groups however, we can't have a finite generating set in the strict sense, as a finite set won't ever cover every possible point.
But the generator of a Lie algebra can be finite.
And just like in finite groups, where you can specify the full group by specifying only the relationships between generating elements, in the Lie algebra you can almost specify the full group by specifying the relationships between the elements of a generator of the Lie algebra.
This "specification of a relation" is done by defining the Lie bracket.
The reason why the algebra works out well for continuous stuff is that by definition an algebra over a field is a vector space with some extra structure, and we know very well how to make infinitesimal elements in a vector space: just multiply its vectors by a constant that cana be arbitrarily small.
Lie algebra Updated +Created
Like everything else in Lie groups, first start with the matrix as discussed at Section "Lie algebra of a matrix Lie group".
Intuitively, a Lie algebra is a simpler object than a Lie group. Without any extra structure, groups can be very complicated non-linear objects. But a Lie algebra is just an algebra over a field, and one with a restricted bilinear map called the Lie bracket, that has to also be alternating and satisfy the Jacobi identity.
Another important way to think about Lie algebras, is as infinitesimal generators.
Because of the Lie group-Lie algebra correspondence, we know that there is almost a bijection between each Lie group and the corresponding Lie algebra. So it makes sense to try and study the algebra instead of the group itself whenever possible, to try and get insight and proofs in that simpler framework. This is the key reason why people study Lie algebras. One is philosophically reminded of how normal subgroups are a simpler representation of group homomorphisms.
To make things even simpler, because all vector spaces of the same dimension on a given field are isomorphic, the only things we need to specify a Lie group through a Lie algebra are:
Note that the Lie bracket can look different under different basis of the Lie algebra however. This is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) page 71 for the Lorentz group.
As mentioned at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4 "Lie Algebras", taking the Lie algebra around the identity is mostly a convention, we could treat any other point, and things are more or less equivalent.