Diophantine equation Updated +Created
Polynomial (possibly a multivariate polynomial) with integer coefficients.
Sometimes systems of Diophantine equations are considered.
Problems generally involve finding integer solutions to the equations, notably determining if any solution exists, and if infinitely solutions exist.
The general problem is known to be undecidable: Hilbert's tenth problem.
The Pythagorean triples, and its generalization Fermat's last theorem, are the quintessential examples.
Hilbert's tenth problem Updated +Created
Once you hear about the uncomputability of such problems, it makes you see that all Diophantine equation questions risk being undecidable, though in some simpler cases we manage to come up with answers. The feeling is similar to watching people trying to solve the Halting problem, e.g. in the effort to determine BB(5).
The beauty of mathematics Updated +Created
Ciro Santilli intends to move his beauty list here little by little: github.com/cirosantilli/mathematics/blob/master/beauty.md
The most beautiful things in mathematics are results that are:
Good lists of such problems Lists of mathematical problems.
Whenever Ciro Santilli learns a bit of mathematics, he always wonders to himself:
Am I achieving insight, or am I just memorizing definitions?
Unfortunately, due to how man books are written, it is not really possible to reach insight without first doing a bit of memorization. The better the book, the more insight is spread out, and less you have to learn before reaching each insight.
Undecidable problem Updated +Created
Is a decision problem of determining if something belongs to a non-recursive language.
Or in other words: there is no Turing machine that always halts for every input with the yes/no output.
Every undecidable problem must obviously have an infinite number of "possibilities of stuff you can try": if there is only a finite number, then you can brute-force it.
Some undecidable problems are of recursively enumerable language, e.g. the halting problem.
Coolest ones besides the obvious boring halting problem: