Can be thought as being produced from gluon-gluon lines of the Feynman diagrams of quantum chromodynamics. This is in contrast to quantum electrodynamics, in which there are no photon-photon vertices, because the photon does not have charge unlike gluons.
This phenomena makes the strong force be very very different from electromagnetism.
I think they are a tool to calculate the probability of different types of particle decays and particle collision outcomes. TODO Minimal example of that.
And they can be derived from a more complete quantum electrodynamics formulation via perturbation theory.
At Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979), an intuitive explanation of them in termes of sum of products of propagators is given.
- www.youtube.com/watch?v=fG52mXN-uWI The Secrets of Feynman Diagrams | Space Time by PBS Space Time (2017)
Force carrier of quantum chromodynamics, like the photon is the force carrier of quantum electrodynamics.
One big difference is that it carrier itself color charge.
Nuclear physics is basically just the study of the complex outcomes of weak interaction + quantum chromodynamics.
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
Why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics? Updated 2024-12-15 +Created 1970-01-01
Physicists love to talk about that stuff, but no one ever has the guts to explain it into enough detail to show its beauty!!!
Perhaps the wisest thing is to just focus entirely on the part to start with, which is the quantum electrodynamics one, which is the simplest and most useful and historically first one to come around.
Perhaps the best explanation is that if you assume those internal symmetries, then you can systematically make "obvious" educated guesses at the interacting part of the Standard Model Lagrangian, which is the fundamental part of the Standard Model. See e.g.:
- derivation of the quantum electrodynamics Lagrangian
- Physics from Symmetry by Jakob Schwichtenberg (2015) chapter 7 "Interaction Theory" derives all three of quantum electrodynamics, weak interaction and quantum chromodynamics Lagrangian from each of the symmetries!
One bit underlying reason is: Noether's theorem.
Notably, axelmaas.blogspot.com/2010/08/global-and-local-symmetries.html gives a good overview:so it seems that that's why they are so key: local symmetries map to the forces themselves!!!
A local symmetry transformation is much more complicated to visualize. Take a rectangular grid of the billiard balls from the last post, say ten times ten. Each ball is spherical symmetric, and thus invariant under a rotation. The system now has a global and a local symmetry. A global symmetry transformation would rotate each ball by the same amount in the same direction, leaving the system unchanged. A local symmetry transformation would rotate each ball about a different amount and around a different axis, still leaving the system to the eye unchanged. The system has also an additional global symmetry. Moving the whole grid to the left or to the right leaves the grid unchanged. However, no such local symmetry exists: Moving only one ball will destroy the grid's structure.Such global and local symmetries play an important role in physics. The global symmetries are found to be associated with properties of particles, e. g., whether they are matter or antimatter, whether they carry electric charge, and so on. Local symmetries are found to be associated with forces. In fact, all the fundamental forces of nature are associated with very special local symmetries. For example, the weak force is actually associated in a very intricate way with local rotations of a four-dimensional sphere. The reason is that, invisible to the eye, everything charged under the weak force can be characterized by a arrow pointing from the center to the surface of such a four-dimensional sphere. This arrow can be rotated in a certain way and at every individual point, without changing anything which can be measured. It is thus a local symmetry. This will become more clearer over time, as at the moment of first encounter this appears to be very strange indeed.
axelmaas.blogspot.com/2010/09/symmetries-of-standard-model.html then goes over all symmetries of the Standard Model uber quickly, including the global ones.