Computational physics is a good way to get valuable intuition about the key equations of physics, and train your numerical analysis skills:
- classical mechanics
- "Real-time heat equation OpenGL visualization with interactive mouse cursor using relaxation method" under the best articles by Ciro Santillis
- phet.colorado.edu PhET simulations from University of Colorado Boulder
Other child sections:
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
Quantum Field Theory visualized by ScienceClic English (2020)
Source. Gives one piece of possibly OK intuition: quantum theories kind of model all possible evolutions of the system at the same time, but with different probabilities. QFT is no different in that aspect.- youtu.be/MmG2ah5Df4g?t=209 describes how the spin number of a field is directly related to how much you have to rotate an element to reach the original position
- youtu.be/MmG2ah5Df4g?t=480 explains which particles are modelled by which spin number
Quantum Fields: The Real Building Blocks of the Universe by David Tong (2017)
Source. Boring, does not give anything except the usual blabla everyone knows from Googling:Quantum Field Theory: What is a particle? by Physics Explained (2021)
Source. Gives some high level analogies between high level principles of non-relativistic quantum mechanics and special relativity in to suggest that there is a minimum quanta of a relativistic quantum field.Second quantization also appears to be useful not only for relativistic quantum mechanics, but also for condensed matter physics. The reason is that the basis idea is to use the number occupation basis. This basis is:
- convenient for quantum field theory because of particle creation and annihilation changes the number of particles all the time
- convenient for condensed matter physics because there you have a gazillion particles occupying entire energy bands
Bibliography:
- www.youtube.com/watch?v=MVqOfEYzwFY "How to Visualize Quantum Field Theory" by ZAP Physics (2020). Has 1D simulations on a circle. Starts towards the right direction, but is a bit lacking unfortunately, could go deeper.