Faster-than-light Updated +Created
One argument of why, is that if you could travel faster than light, then you could send a message to a point in Spacetime that is spacelike-separated from the present. But then since the target is spacelike separated, there exists a inertial frame of reference in which that event happens before the present, which would be hard to make sense of.
Even worse, it would be possible to travel back in time:
Poincaré group Updated +Created
In simple and concrete terms. Suppose you observe N particles following different trajectories in Spacetime.
There are two observers traveling at constant speed relative to each other, and so they see different trajectories for those particles:
Note that the first two types of transformation are exactly the non-relativistic Galilean transformations.
The Poincare group is the set of all matrices such that such a relationship like this exists between two frames of reference.
Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) Updated +Created
Talk title shown on intro: "Today's Answers to Newton's Queries about Light".
6 hour lecture, where he tries to explain it to an audience that does not know any modern physics. This is a noble effort.
Part of The Douglas Robb Memorial Lectures lecture series.
Feynman apparently also made a book adaptation: QED: The Strange Theory of Light and Matter. That book is basically word by word the same as the presentation, including the diagrams.
According to www.feynman.com/science/qed-lectures-in-new-zealand/ the official upload is at www.vega.org.uk/video/subseries/8 and Vega does show up as a watermark on the video (though it is too pixilated to guess without knowing it), a project that has been discontinued and has has a non-permissive license. Newbs.
4 parts:
This talk has the merit of being very experiment oriented on part 2, big kudos: how to teach and learn physics
Video 1.
Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) uploaded by Trev M (2015)
Source. Single upload version. Let's use this one for the timestamps I guess.