Klein-Gordon equation Updated +Created
A relativistic version of the Schrödinger equation.
Correctly describes spin 0 particles.
The most memorable version of the equation can be written as shown at Section "Klein-Gordon equation in Einstein notation" with Einstein notation and Planck units:
Has some issues which are solved by the Dirac equation:
Schrödinger equation Updated +Created
Experiments explained:
Experiments not explained: those that the Dirac equation explains like:
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:
Equation 1.
Schrodinger equation
.
where:
  • is the reduced Planck constant
  • is the wave function
  • is the time
  • is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:
Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.
Schrödinger equation solution for the hydrogen atom Updated +Created
Is the only atom that has a closed form solution, which allows for very good predictions, and gives awesome intuition about the orbitals in general.
It is arguably the most important solution of the Schrodinger equation.
In particular, it predicts:
The explicit solution can be written in terms of spherical harmonics.
Video 1.
A Better Way To Picture Atoms by minutephysics (2021)
Source. Renderings based on the exact Schrödinger equation solution for the hydrogen atom that depict wave function concentration by concentration of small balls, and angular momentum by how fast the balls rotate at each point. Mentions that the approach is inspired by de Broglie-Bohm theory.
The Fourier transform is a bijection in Updated +Created
As mentioned at Section "Plancherel theorem", some people call this part of Plancherel theorem, while others say it is just a corollary.
This is an important fact in quantum mechanics, since it is because of this that it makes sense to talk about position and momentum space as two dual representations of the wave function that contain the exact same amount of information.
Uncertainty principle Updated +Created
The wave equation contains the entire state of a particle.
From mathematical formulation of quantum mechanics remember that the wave equation is a vector in Hilbert space.
And a single vector can be represented in many different ways in different basis, and two of those ways happen to be the position and the momentum representations.
More importantly, position and momentum are first and foremost operators associated with observables: the position operator and the momentum operator. And both of their eigenvalue sets form a basis of the Hilbert space according to the spectral theorem.
When you represent a wave equation as a function, you have to say what the variable of the function means. And depending on weather you say "it means position" or "it means momentum", the position and momentum operators will be written differently.
Furthermore, the position and momentum representations are equivalent: one is the Fourier transform of the other: position and momentum space. Remember that notably we can always take the Fourier transform of a function in due to Carleson's theorem.
Then the uncertainty principle follows immediately from a general property of the Fourier transform: en.wikipedia.org/w/index.php?title=Fourier_transform&oldid=961707157#Uncertainty_principle
In precise terms, the uncertainty principle talks about the standard deviation of two measures.
We can visualize the uncertainty principle more intuitively by thinking of a wave function that is a real flat top bump function with a flat top in 1D. We can then change the width of the support, but when we do that, the top goes higher to keep probability equal to 1. The momentum is 0 everywhere, except in the edges of the support. Then:
  • to localize the wave in space at position 0 to reduce the space uncertainty, we have to reduce the support. However, doing so makes the momentum variation on the edges more and more important, as the slope will go up and down faster (higher top, and less x space for descent), leading to a larger variance (note that average momentum is still 0, due to to symmetry of the bump function)
  • to localize the momentum as much as possible at 0, we can make the support wider and wider. This makes the bumps at the edges smaller and smaller. However, this also obviously delocalises the wave function more and more, increasing the variance of x