Heat equation Updated +Created
Besides being useful in engineering, it was very important historically from a "development of mathematics point of view", e.g. it was the initial motivation for the Fourier series.
Some interesting properties:
Maxwell's equations Updated +Created
Unified all previous electro-magnetism theories into one equation.
Explains the propagation of light as a wave, and matches the previously known relationship between the speed of light and electromagnetic constants.
The equations are a limit case of the more complete quantum electrodynamics, and unlike that more general theory account for the quantization of photon.
The system consists of 6 unknown functions that map 4 variables: time t and the x, y and z positions in space, to a real number:
  • , , : directions of the electric field
  • , , : directions of the magnetic field
and two known input functions:
  • : density of charges in space
  • : current vector in space. This represents the strength of moving charges in space.
Due to the conservation of charge however, those input functions have the following restriction:
Equation 1.
Charge conservation
.
Also consider the following cases:
  • if a spherical charge is moving, then this of course means that is changing with time, and at the same time that a current exists
  • in an ideal infinite cylindrical wire however, we can have constant in the wire, but there can still be a current because those charges are moving
    Such infinite cylindrical wire is of course an ideal case, but one which is a good approximation to the huge number of electrons that travel in a actual wire.
The goal of finding and is that those fields allow us to determine the force that gets applied to a charge via the Equation "Lorentz force", and then to find the force we just need to integrate over the entire body.
Finally, now that we have defined all terms involved in the Maxwell equations, let's see the equations:
Equation 2.
Gauss' law
.
Equation 3.
Gauss's law for magnetism
.
Equation 4.
Faraday's law
.
Equation 5.
Ampere's circuital law
.
You should also review the intuitive interpretation of divergence and curl.
Navier-Stokes equations Updated +Created
Schrödinger equation Updated +Created
Experiments explained:
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:
Equation 1.
Schrodinger equation
.
where:
The argument of could be anything, e.g.:
Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.