Analogous problem to the secondary structure of proteins. Likely a bit simpler due to the strong tendency for complementary pairs to bind.
A DNA sequence that marks the start of a transcription area.
Used in Positive-strand RNA virus to replicate.
I don't think it's present outside viruses. Well regulated organisms just transcribe more DNA instead.
Sequence of genes under a single promoter. For an example, see E. Coli K-12 MG1655 operon thrLABC.
A single operon may produce multiple different transcription units depending on certain conditions, see: operon vs transcription unit.
A sequence of mRNA that can actually be transcribed.
For an example, see E. Coli K-12 MG1655 operon thrLABC.
Multiple different transcription units can be produced by a single operon, see: operon vs transcription unit.
Consider the E. Coli K-12 MG1655 operon thrLABC.
That single operon can produce two different mRNA transcription units:
- thrL only, the transcription unit is also called thrL: biocyc.org/ECOLI/NEW-IMAGE?object=TU0-42486
- thrL + thrA + thrB + thrC all together, the transcription unit is called thrLABC: biocyc.org/ECOLI/NEW-IMAGE?type=OPERON&object=TU00178
The reason for this appears to be that there is a rho-independent termination region after thrL. But then under certain conditions, that must get innactivated, and then the thrLABC is produced instead.
Multiple genes coding for multiple proteins in one transcription unit, e.g. e. Coli K-12 MG1655 gene thrL and e. Coli K-12 MG1655 gene thrA are both prat of the E. Coli K-12 MG1655 operon thrLABC.