Shimano product lines by Ciro Santilli 37 Updated 2025-07-16
Intel Arc by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Worst We've Tested: Broken Intel Arc GPU Drivers by Gamers Nexus (2022)
Source.
SpaceX by Ciro Santilli 37 Updated 2025-07-16
Video 1.
What Elon Musk's 42,000 Satellites Could Do To Earth by Tech Insider (2020)
Source. Good primer. The main difference from older systems is that they fly closer to Earth, and are not geostationary. As a result, you have better latency. But you also need a bunc of them to have continuous coverage of an area.
This is a good approach. The downside is that while you are developing the implementation and testing interactively you might notice that the requirements are wrong, and then the tests have to change.
One intermediate approach Ciro Santilli likes is to do the implementation and be happy with interactive usage, then create the test, make it pass, then remove the code that would make it pass, and see it fail. This does have a risk that you will forget to test something, but Ciro finds it is a worth it generally. Unless it really is one of those features that you are unable to develop without an automated test, generally more "logical/mathematical" stuff. This is a sort of laziness Driven Development.
Nvidia T4 by Ciro Santilli 37 Updated 2025-07-16
According to wccftech.com/nvidia-drops-tesla-brand-to-avoid-confusion-with-tesla/ this was the first card that semi-dropped the "Nvidia Tesla" branding, though it is still visible in several places.
Nvidia A10G by Ciro Santilli 37 Updated 2025-07-16
According to www.baseten.co/blog/nvidia-a10-vs-a10g-for-ml-model-inference/ the Nvidia A10G is a variant of the Nvidia A10 created specifically for AWS. As such there isn't much information publicly available about it.
the A10 prioritizes tensor compute, while the A10G has a higher CUDA core performance
Telecommunication by Ciro Santilli 37 Updated 2025-07-16
Communicating at a distance, from Greek "tele" for distance!
A very cool thing about telecommunication is, besides how incredibly fast it advanced (in this sense it is no cooler than integrated circuit development), how much physics and information theory is involved in it. Applications of telecommunication implementation spill over to other fields, e.g. some proposed quantum computing approaches are remarkably related to telecommunication technology, e.g. microwaves and silicon photonics.
This understanding made Ciro Santilli wish he had opted for telecommunication engineering when he was back in school in Brazil. For some incomprehensible reason, telecommunications was the least competitive specialization in the electric engineering department at the time, behind even power electronics. This goes to show both how completely unrelated to reality university is, and how completely outdated Brazil is/was. Sad stuff.
It is hard to pinpoint why, but the following useful software just feel bad for some reason:
Synchron by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Syncron explanation video by Syncron (2018)
Source.
Video 2.
Rodney & Phil Use Our Brain Computer Interface by Syncron (2022)
Source. It might be amazing for those dudes, but it still has a long way to go.
Register transfer level is the abstraction level at which computer chips are mostly designed.
The only two truly relevant RTL languages as of 2020 are: Verilog and VHDL. Everything else compiles to those, because that's all that EDA vendors support.
Much like a C compiler abstracts away the CPU assembly to:
  • increase portability across ISAs
  • do optimizations that programmers can't feasibly do without going crazy
Compilers for RTL languages such as Verilog and VHDL abstract away the details of the specific semiconductor technology used for those exact same reasons.
The compilers essentially compile the RTL languages into a standard cell library.
Examples of companies that work at this level include:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact