This didn't really deliver. It does start from the basics, but it is often hard to link those basics to more interesting or deeper points. Also like many other Quantum field theory book, it does not seem to contain a single comparison between a theoretical result and an experiment.
This is very widely used in courses as of 2020, it became kind of the default book.
Unfortunately, this approach bores Ciro Santilli to death. Or perhaps is too just advanced for him to appreciate. Either of those.
800+ pages.
This is one of the first examples in most quantum field theory.
It usually does not involve any forces, just the interpretation of what the quantum field is.
Motion in computer vision refers to the change in the position of objects over time within a sequence of images or video frames. Analyzing motion is a fundamental aspect of computer vision, as it enables machines to understand dynamic scenes and interpret the behavior of objects. Here are several key concepts related to motion in computer vision: 1. **Optical Flow**: This technique computes the motion of objects between two consecutive frames.
Quantum entanglement by Ciro Santilli 37 Updated 2025-07-16
Quantum entanglement is often called spooky/surprising/unintuitive, but they key question is to understand why.
To understand that, you have to understand why it is fundamentally impossible for the entangled particle pair be in a predefined state according to experiments done e.g. where one is deterministically yes and the other deterministically down.
In other words, why local hidden-variable theory is not valid.
How to generate entangled particles:
Video 1.
Bell's Theorem: The Quantum Venn Diagram Paradox by minutephysics (2017)
Source.
Contains the clearest Bell test experiment description seen so far.
It clearly describes the photon-based 22.5, 45 degree/85%/15% probability photon polarization experiment and its result conceptually.
It does not mention spontaneous parametric down-conversion but that's what they likely hint at.
Done in Collaboration with 3Blue1Brown.
Video 2.
Bell's Inequality I by ViaScience (2014)
Source.
Video 3.
Quantum Entanglement & Spooky Action at a Distance by Veritasium (2015)
Source. Gives a clear explanation of a thought Bell test experiments with electron spin of electron pairs from photon decay with three 120-degree separated slits. The downside is that he does not clearly describe an experimental setup, it is quite generic.
Video 4.
Quantum Mechanics: Animation explaining quantum physics by Physics Videos by Eugene Khutoryansky (2013)
Source. Usual Eugene, good animations, and not too precise explanations :-) youtu.be/iVpXrbZ4bnU?t=922 describes a conceptual spin entangled electron-positron pair production Stern-Gerlach experiment as a Bell test experiments. The 85% is mentioned, but not explained at all.
Video 5.
Quantum Entanglement: Spooky Action at a Distance by Don Lincoln (2020)
Source. This only has two merits compared to Video 3. "Quantum Entanglement & Spooky Action at a Distance by Veritasium (2015)": it mentions the Aspect et al. (1982) Bell test experiment, and it shows the continuous curve similar to en.wikipedia.org/wiki/File:Bell.svg. But it just does not clearly explain the bell test.
Video 6.
Quantum Entanglement Lab by Scientific American (2013)
Source. The hosts interview Professor Enrique Galvez of Colgate University who shows briefly the optical table setup without great details, and then moves to a whiteboard explanation. Treats the audience as stupid, doesn't say the keywords spontaneous parametric down-conversion and Bell's theorem which they clearly allude to. You can even them showing a two second footage of the professor explaining the rotation experiments and the data for it, but that's all you get.
Bell test experiment by Ciro Santilli 37 Updated 2025-07-16
Some of the most remarkable ones seem to be:
The neutron temperature example is crucial: you just can't give the cross section of a target alone, the energy of the incoming beam also matters.
Cloud chamber by Ciro Santilli 37 Updated 2025-07-16
Figure 1.
Radium 226 source in a cloud chamber
. Source.
Video 1.
How to make a cloud chamber by Suzie Sheehy (2011)
Source.
I also believe in publishing null results, so here goes.
Thick cardboard paper and Gorilla Tape: the intense Sun heat made the cardboard bend, and even the Gorilla tape could not hold it, leading to light leakage. Even worse, it started to smell a bit, and I got afraid that it could catch fire, so don't do this! Maybe I will try coating with aluminium foil next time, but I'm afraid it might stick to the glass. In any case, even if those setups work, your room may be permanently very dark depending on how far the window opens, which can lead to other problems such as mold. Another downside of this method is that the tape is extremely sticky, and especially difficult to remove if it touches the glass, where you can't use metallic items to scrape it off without scratching the glass. I had to get a solvent and use a lot of elbow grease to get rid of it.
I have tried a few sleeping masks, but none of them were enough on their own. There is always some light leakage around the nose, especially as you turn around in the night. And some of them are too hot. I have tried:
I also considered getting one of those "Perfect Fit Blinds" www.blindsdirect.co.uk/perfect-fit-roller-blinds (archive) which fit between the glass and the insulation. This looks like it could work. But I didn't go for it in the end because my window has 3 glass panels, so I would have to get three of those blinds separately.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact