The Infinite Sites Model is a concept used in population genetics, particularly in the context of genetic mutation and variation. In this model, it is assumed that there are an infinite number of possible genetic loci (sites) that can mutate. Each locus can mutate independently, and each mutation is considered to create a new, unique genetic variant. This means that over time, as mutations accumulate, the genetic diversity in a population can increase without limit, due to the assumption of infinite sites.
The Journal of Mechanics of Materials and Structures (JMMS) is a peer-reviewed academic journal that focuses on research related to the mechanics of materials and structures. It encompasses a wide range of topics within the fields of mechanics, materials science, and structural engineering. The journal publishes original research articles, reviews, and possibly other types of contributions that explore theoretical, computational, and experimental studies related to the behavior of materials and structures under various loading conditions.
Integrodifference equations are a type of mathematical equation used to model discrete-time processes where dynamics are influenced by both local and non-local (or distant) interactions. These equations are particularly useful in various fields such as population dynamics, ecology, and spatial modeling where the future state of a system depends not only on its current state but also on the states of neighboring systems or regions.
The Journal of Biological Dynamics is a scientific journal that focuses on the mathematical and computational modeling of biological phenomena. It publishes research articles that explore theoretical and applied aspects of dynamics in biological systems, including but not limited to population dynamics, ecological interactions, disease dynamics, and the modeling of biological processes. The journal serves as a platform for researchers to share their findings and methodologies, often emphasizing interdisciplinary approaches that combine biology, mathematics, and computational techniques.
Kinetic proofreading is a molecular mechanism that enhances the fidelity of biological processes, particularly in protein synthesis and DNA replication. It involves a series of kinetic steps that allow the system to discriminate between correct and incorrect substrates or interactions, thus reducing the likelihood of errors. In the context of protein synthesis, for example, kinetic proofreading refers to the way ribosomes ensure that the correct aminoacyl-tRNA is matched with the corresponding codon on the mRNA.
The Mathematical Biosciences Institute (MBI) is an interdisciplinary research institute based at The Ohio State University. It focuses on the application of mathematical techniques and methods to solve problems in the biological sciences. The institute aims to foster collaboration between mathematicians, biologists, and other scientists to advance understanding in areas such as ecology, evolutionary biology, epidemiology, and systems biology.
Theoretical ecology is a subfield of ecology that focuses on the development and application of mathematical models and theoretical frameworks to understand ecological processes and interactions within ecosystems. It aims to provide insights into the dynamics of populations, communities, and ecosystems by using formal models to simulate and predict ecological phenomena. Key aspects of theoretical ecology include: 1. **Modeling Ecological Interactions**: Theoretical ecologists create models to represent relationships between different species, as well as between species and their environment.
Risa Wechsler is an astrophysicist known for her work in cosmology, particularly in the areas of galaxy formation, large-scale structure, and dark energy. She has contributed to our understanding of the universe's evolution and the distribution of galaxies. Wechsler has been involved in various research projects and collaborations, including those focused on cosmic surveys and simulations to study the properties of dark matter and the expansion of the universe.
The Narrow Escape Problem is a concept often encountered in mathematical biology, particularly in the field of diffusion processes and stochastic processes. It refers to the study of how particles (or small organisms) escape from a confined space through a narrow opening or boundary. In more technical terms, it examines the diffusion of particles that are subject to certain conditions, such as being confined within a domain but having a small chance of escaping through a specific narrow region (e.g., an exit or an absorbing boundary).
"On Growth and Form" is a seminal work written by the British biologist D'Arcy Wentworth Thompson and first published in 1917. The book explores the relationship between biology and geometry, examining how the forms of living organisms are influenced by physical and mathematical principles. Thompson emphasizes that the shapes of organisms cannot be understood simply through evolutionary biology; instead, he argues that physical forces, mechanical properties, and mathematical patterns play a crucial role in shaping biological structures.
The Paradox of Enrichment is a concept in ecology that describes a situation in which increasing the productivity or nutrient levels of an ecosystem can lead to a decline in biodiversity and even the stability of certain species populations. This counterintuitive phenomenon was first articulated by ecologist John T. Curtis in the context of predator-prey dynamics. In a simplified model, consider a predator-prey system where an increase in food resources (enriching the environment) allows prey populations to grow.
The Paradox of the Plankton refers to an ecological conundrum identified by G.E. Hutchinson in 1961 regarding the coexistence of a large number of planktonic algal species in aquatic ecosystems, particularly in the face of competition for limited resources. According to the competitive exclusion principle, two species competing for the same resources cannot coexist indefinitely; one species will typically outcompete the other.
The Plateau Principle, often discussed in evolutionary biology and ecology, suggests that there are limits to the benefits that can be gained from continuous improvement or optimization in a certain context. Essentially, after a certain point, further efforts in enhancing performance, efficiency, or adaptation yield diminishing returns. In more specific applications, such as in fitness training or learning, the Plateau Principle can manifest as periods where performance levels off and does not improve despite continued effort.
The Population Balance Equation (PBE) is a mathematical formulation used to describe the dynamics of a population of particles or entities as they undergo various processes such as growth, aggregation, breakage, and interactions. It is widely used in fields like chemical engineering, materials science, pharmacology, and environmental engineering to model systems involving dispersed phases, such as aerosols, emulsions, or biological cells.
The golden ratio, approximately 1.618, has been used in various fields, especially art, architecture, and design, since ancient times. Here’s a list of notable works and structures where the golden ratio is believed to have been employed: ### Art 1. **"The Last Supper" by Leonardo da Vinci** - The proportions of the composition, especially the placement of Christ and the apostles, exhibit the golden ratio.
"Relativity" is a famous lithograph created by the Dutch artist M.C. Escher in 1953. The artwork is known for its intricate and impossible architectural constructions that challenge the viewer's perception of reality. In "Relativity," Escher depicts a world where different gravity orientations coexist, allowing figures to walk on multiple planes and surfaces that appear to defy the laws of physics. The composition includes staircases that lead nowhere and figures that interact in seemingly impossible ways.
In biochemistry, the term "response coefficient" can refer to various contexts, but it often relates to the quantification of the response of a biological system or a biochemical assay to changes in certain conditions, such as substrate concentration, enzyme activity, or the presence of inhibitors. One common application of response coefficients is in enzyme kinetics, where the response coefficient can describe how the rate of an enzymatic reaction changes in response to changes in substrate concentration.
Secondary electrospray ionization (SESI) is a mass spectrometry ionization technique that is used to analyze volatile and semi-volatile compounds in the gas phase. It is an extension of the conventional electrospray ionization (ESI) method, which is typically utilized for non-volatile compounds in solution. In SESI, a sample can be introduced as a gas or vapor rather than in a liquid form, which broadens the range of analytes that can be studied.
The Sulston score is a grading system used to evaluate the severity of damage caused by a traumatic brain injury, specifically in the context of head injuries. It was developed by neurologist Dr. Michael Sulston and is primarily used to assess the extent of brain injury in patients who have sustained concussions or other head trauma. The scoring system typically takes into account various clinical factors, such as the level of consciousness, neurological functioning, and the presence of any physical symptoms following the injury.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact