The K-Poincaré group is an extension of the traditional Poincaré group, which is fundamental in describing the symmetries of spacetime in special relativity. The Poincaré group combines translations and Lorentz transformations (rotations and boosts) to form the symmetry group of Minkowski spacetime. In contrast, the K-Poincaré group incorporates additional features that are relevant in the context of noncommutative geometry and quantum gravity.
Koszul algebra is a concept from the field of algebra, particularly in the area of homological algebra and commutative algebra. It is named after Jean-Pierre Serre, who introduced the notion of Koszul complexes, and it has since been developed further in various contexts. A Koszul algebra is generally defined in connection with a certain type of graded algebra that is associated with a sequence of elements in a ring.
Los Alamos chess is a variant of chess that was invented in the 1970s by a group of chess enthusiasts in Los Alamos, New Mexico. This variant is played on a standard chessboard with the regular pieces, but it introduces some unique rules that differentiate it from traditional chess. In Los Alamos chess, each player has the ability to move a piece and then "block" the opponent's piece with a different piece on the next turn, adding a strategic layer to the game.
Krull's separation lemma is a result in commutative algebra and algebraic geometry that concerns the behavior of prime ideals in a Noetherian ring.
Linear topology, also referred to as a **linear order topology** or **order topology**, is a concept in topology that arises from the properties of linearly ordered sets. The primary idea is to define a topology on a linearly ordered set that reflects its order structure.
Libratus is an advanced artificial intelligence program developed by researchers at Carnegie Mellon University, designed to play the game of heads-up no-limit poker. It gained significant attention for its ability to outperform professional human poker players in a series of matches in early 2017. Libratus utilizes a combination of techniques from game theory, machine learning, and computational methods to make decisions during gameplay.
A **locally compact field** is a type of field that has the property of being locally compact with respect to its topology. In the context of field theory, a field is a set equipped with two operations (typically addition and multiplication) satisfying certain axioms. When we talk about a "locally compact field," we are often examining topological fields, which are fields that also have a topology that is compatible with the field operations.
A **locally finite poset** (partially ordered set) is a specific type of poset characterized by a particular property regarding its elements and their relationships. In more formal terms, a poset \( P \) is said to be **locally finite** if for every element \( p \in P \), the set of elements that are comparable to \( p \) (either less than or greater than \( p \)) is finite.
An **algebraic curve** is a curve defined by a polynomial equation in two variables with coefficients in a given field, often a field of real or complex numbers. More formally, an algebraic curve can be described as the set of points (x, y) in the plane that satisfy a polynomial equation of the form: \[ F(x, y) = 0 \] where \( F(x, y) \) is a polynomial in two variables.
Maharam algebra is a branch of mathematics that deals primarily with the study of certain kinds of measure algebras, specifically in the context of probability and mathematical logic. It is named after the mathematician David Maharam, who made significant contributions to the theory of measure and integration. In particular, Maharam algebras are often associated with the study of the structure of complete Boolean algebras and the types of measures that can be defined on them.
In the context of algebra and order theory, a **semilattice** is an algebraic structure consisting of a set equipped with an associative and commutative binary operation that has an identity element. Semilattices can be classified into two main types: **join-semilattices**, where the operation is the least upper bound (join), and **meet-semilattices**, where the operation is the greatest lower bound (meet).
The Lorentz group is a fundamental group in theoretical physics that describes the symmetries of spacetime in special relativity. Named after the Dutch physicist Hendrik Lorentz, it consists of all linear transformations that preserve the spacetime interval between events in Minkowski space. In mathematical terms, the Lorentz group can be defined as the set of all Lorentz transformations, which are transformations that can be expressed as linear transformations of the coordinates in spacetime that preserve the Minkowski metric.
A **normed algebra** is a specific type of algebraic structure that combines features of both normed spaces and algebras. To qualify as a normed algebra, a mathematical object must meet the following criteria: 1. **Algebra over a field**: A normed algebra \( A \) is a vector space over a field \( F \) (typically the field of real or complex numbers) equipped with a multiplication operation that is associative and distributive with respect to vector addition.
In homological algebra, a **monad** is a particular construction that arises in category theory. Monads provide a framework for describing computations, effects, and various algebraic structures in a categorical context.
In abstract algebra, especially in the study of ring theory, various properties of rings can be proven using fundamental definitions and theorems. Here’s a brief overview of several elementary properties of rings along with proofs for each. ### 1. **Ring Non-emptiness** **Property:** Every ring \( R \) (with unity) contains the additive identity, denoted as \( 0 \).
A **quadratic Lie algebra** is a certain type of Lie algebra that is specifically characterized by the nature of its defining relations and structure. More precisely, it can be defined in the context of a quadratic Lie algebra over a field, which can be associated with a bilinear form or quadratic form.
Quadratic algebra typically refers to the study of quadratic expressions, equations, and their characteristics in a mathematical context. Quadratic functions are polynomial functions of degree two and are generally expressed in the standard form: \[ f(x) = ax^2 + bx + c \] where \( a \), \( b \), and \( c \) are constants, and \( a \neq 0 \).
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact