"Black Holes and Time Warps: Einstein's Outrageous Legacy" is a popular science book written by physicist Kip S. Thorne, published in 1994. In the book, Thorne explores the concepts of black holes, wormholes, and time travel, delving into both the theoretical physics behind these phenomena and their implications for our understanding of the universe.
Biological exponential growth refers to a pattern of population growth where the number of individuals in a population increases rapidly over time under ideal environmental conditions. This phenomenon occurs when resources are abundant and environmental factors do not limit reproduction and survival. Key characteristics of biological exponential growth include: 1. **Rapid Growth Rate**: When conditions are favorable, populations can grow at a constant rate, resulting in a doubling of the population size over regular intervals.
"The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next" is a book written by physicist Lee Smolin, published in 2006. In this work, Smolin critically examines the state of theoretical physics, particularly focusing on string theory, which had been gaining prominence as a leading candidate for a unified theory of physics.
The "Enemy Release Hypothesis" (ERH) is a theoretical framework in ecology and biogeography that explains why certain species, particularly invasive species, can thrive in new environments where they have been introduced. The hypothesis posits that when a species is introduced to a new habitat, it often leaves behind its natural enemies, such as predators, parasites, and diseases, which can suppress its population in its native range.
Immigration reduction in the United States refers to policies and measures aimed at decreasing the number of immigrants entering or residing in the country. Advocates of immigration reduction argue that limiting immigration can help protect jobs for native-born Americans, reduce strain on public services, enhance national security, and preserve cultural identity. Key aspects of immigration reduction include: 1. **Policy Changes**: This may involve changing visa availability, imposing stricter eligibility criteria for immigration, or enhancing border enforcement measures.
Fluctuation loss, often referred to in the context of economics and finance, generally describes the losses that occur due to variations or fluctuations in market conditions, such as prices, interest rates, or demand. It can also refer to unexpected changes in supply and demand that impact stability in a market or business environment. In a more specific context, fluctuation loss might occur in inventory management, where businesses may face losses due to fluctuations in demand that lead to overstock or understock situations.
In biology, a growth curve is a graphical representation that shows the increase in the number of cells, organisms, or biological mass over time. Growth curves can be used to analyze the growth patterns of populations, microorganisms, plants, or even different stages in the life of an individual organism. They typically depict how a biological entity grows and can include various phases, often classified into distinct stages.
In electronics, "half-time" generally refers to the time required for the voltage across a capacitor to decay to half of its initial value during discharge, or for a signal to reach half of its maximum value in certain contexts. It is a concept often associated with the behavior of capacitors in RC (resistor-capacitor) circuits. **1. Capacitor Discharge:** When a charged capacitor discharges through a resistor, the voltage across the capacitor decreases exponentially.
Kernel-phase refers to a method used in the analysis of interferometric data, particularly in the context of astrophysics and astronomy. It is often employed in the study of exoplanets and the characterization of astronomical objects with instruments like the Very Large Telescope Interferometer (VLTI) and others. The main idea behind kernel-phase is to analyze the phase information of interferometric data rather than relying solely on the intensity.
The Hilbert spectrum is a tool used in signal processing and time series analysis that provides a way to analyze non-linear and non-stationary signals. It is derived from the Hilbert transform, which can be applied to a signal to create an analytic representation. The Hilbert transform allows the extraction of instantaneous frequency and amplitude from a signal, creating a time-dependent representation that can reveal information about the signal's frequency content over time.
A Low Frequency Analyzer and Recorder is a specialized instrument or device designed to capture, analyze, and record low-frequency signals, typically in the range of a few hertz up to several kilohertz. These devices are used in various fields, including geophysics, seismology, audio engineering, and electromagnetic research.
Pairwise error probability is a statistical measure used in the context of communication and signal processing, specifically in the analysis of error performance of multi-class classification systems or communication channels. It quantifies the probability of making an incorrect decision between two specific classes or hypotheses.
Pulse width refers to the duration of time that a signal is in a "high" or "active" state during a pulse cycle. It is typically measured in seconds, milliseconds, microseconds, or nanoseconds, depending on the context. In digital electronics and signal processing, pulse width is an important parameter that characterizes the timing of digital signals, particularly in applications like pulse-width modulation (PWM), timers, and communication protocols.
Rasta filtering, also known as "Rasta" or "Rasta-based filtering," is a technique used primarily in the field of signal processing and telecommunications. It is particularly relevant for improving speech recognition accuracy in audio processing systems. The term "Rasta" itself derives from the name "Relative Spectral" filtering, and it refers to methods that focus on normalizing or adjusting the spectral characteristics of a signal in a time- and frequency-selective manner.
The term "return ratio" can refer to different financial metrics that assess the profitability or performance of an investment, company, or financial asset relative to its costs or capital. Here are a few common return ratios: 1. **Return on Investment (ROI)**: This ratio measures the gain or loss generated relative to the amount of money invested.
The Sensitivity Index is a measure used to quantify how sensitive a particular outcome is to changes in input variables. It is commonly employed in various fields such as finance, risk management, environmental studies, and epidemiology, among others. The concept helps analysts understand the impact of uncertainty in input variables on the final results of a model or system.
A **signal transfer function** is a mathematical representation used in control systems and signal processing to describe the relationship between the input and output signals of a system. It simplifies the analysis of linear time-invariant (LTI) systems by using the Laplace transform or the Fourier transform. ### Basics of Transfer Function 1.
A time-invariant system is a system in which the behavior and characteristics do not change over time.
Time reversal signal processing is a technique used in various fields such as acoustics, optics, and telecommunications, which leverages the principles of wave propagation and symmetry in physical systems. The core idea behind time reversal is to capture and reconstruct a signal by effectively reversing the travel time of the waves that carry it.
A wavelet is a mathematical function used to divide data into different frequency components and study each component with a resolution that matches its scale. It is particularly useful for analyzing non-stationary signals, which can change over time, unlike traditional Fourier transformations that analyze signals in a fixed manner.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact