This is the order in which a binary search tree should be traversed for ordered output, i.e.:
- everything to the left is smaller than parent
- everything to the right is larger than parent
This ordering makes sense for binary trees and not k-ary trees in general because if there are more than two nodes it is not clear what the top node should go in the middle of.
This is unlike pre-order depth-first search and post-order depth-first search which generalize obviously to general trees.
As mentioned at Human Compatible by Stuart J. Russell (2019), game theory can be seen as the part of artificial intelligence that deas with scenarios where multiple intelligent agents are involved.
The best example to look at first is the penalty kick left right Nash equilibrium.
Then, a much more interesting example is choosing a deck of a TCG competition: Magic: The Gathering meta-based deck choice is a bimatrix game, which is the exact same, but each player has N choices rather than 2.
The next case that should be analyzed is the prisoner's dilemma.
The key idea is that:
- imagine that the game will be played many times between two players
- if one player always chooses one deck, the other player will adapt by choosing the anti-deck
- therefore, the best strategy for both players, is to pick decks randomly, each with a certain probability. This type of probabilistic approach is called a mixed strategy
- if any player deviates from the equilibrium probability, then the other player can add more of the anti-deck to the deck that the other player deviated, and gain an edgeTherefore, using equilibrium probabilities is the optimal way to play
Poet, scientists and warriors all in one? Conquerors of the useless.
A wise teacher from University of São Paulo once told the class Ciro Santilli attended an anecdote about his life:It turned out that, about 10 years later, Ciro ended up following this advice, unwittingly.
I used to want to learn Mathematics.But it was very hard.So in the end, I became an engineer, and found an engineering solution to the problem, and married a Mathematician instead.
Ciro once read that there are two types of mathematicians/scientists (he thinks it was comparing Einstein to some Jack of all trades polymath who didn't do any new discoveries):
- high flying birds, who know a bit of everything, feel the beauty of each field, but never dig deep in any of them
- gophers, who dig all the way down, on a single subject, until they either get the Nobel Prize, or work on the wrong problem and waste their lives
TODO long after Ciro forgot where he had read this from originally, someone later pointed him to: www.ams.org/notices/200902/rtx090200212p.pdf Birds and Frogs by Freeman Dyson (2009), which is analogous but about Birds and Frogs. So did Ciro's memory play a trick on him, or is there also a variant; of this metaphor with a gopher?
Ciro is without a doubt the bird type. Perhaps the ultimate scientist is the one who can combine both aspects in the right amount?
Ciro gets bored of things very quickly.
Once he understands the general principles, if the thing is not the next big thing, Ciro considers himself satisfied without all the nitty gritty detail, and moves on to the next attempt.
In the field of mathematics for example, Ciro is generally content with understanding cool theorem statements. More generally, one of Ciro's desires is for example to understand the significance of each physics Nobel Prize.
This is also very clear for example after Ciro achieved Linux Kernel Module Cheat: he now had the perfect setup to learn all the Linux kernel shady details but at the same time after all those years he finally felt that "he could do it, so that was enough", and soon moved to other projects.
If Ciro had become a scientist, he would write the best review papers ever, just like in the current reality he writes amazing programming tutorials on Stack Overflow.
Ciro has in his mind an overly large list of subjects that "he feels he should know the basics of", and whenever he finds something in one of those topics that he does not know enough about, he uncontrollably learns it, even if it is not the most urgent thing to be done. Or at least he puts a mention on his "list of sources" about the subject. Maybe everyone is like that. But Ciro feels that he feels this urge particularly strongly. Correspondingly, if a subject is not in that list, Ciro ignores it without thinking twice.
Ciro believes that high flying birds are the type of people better suited for venture capital investment management: you know a bit of what is hot on several fields to enough depth to decide where to place your bets and how to guide them. But you don't have the patience to actually go deeply into any one of them and deal with each individual shit that comes up.
Cosmos: A Personal Voyage (1980) episode 1 mentions as quoted by the Wikipedia page for Eratosthenes:That's Ciro.
According to an entry in the Suda (a 10th-century encyclopedia), his critics scorned him, calling him beta (the second letter of the Greek alphabet) because he always came in second in all his endeavors.
This dude looks like a God. Ciro Santilli does not understand his stuff, but just based on the names of his theories, e.g. "Yoga of anabelian algebraic geometry", and on his eccentric lifestyle, it is obvious that he was in fact a God.
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:lagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
- compound Atwood machine. Here, we can use the coordinates as the heights of masses relative to the axles rather than absolute heights relative to the ground
- double pendulum, using two angles. The Lagrangian approach is simpler than using Newton's laws
- two-body problem, use the distance between the bodies
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:This produces a system of partial differential equations with:
- equations
- unknown functions
- at most second order derivatives of . Those appear because of the chain rule on the second term.
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
- the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
- after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: S.
TODO advantages:
- physics.stackexchange.com/questions/254266/advantages-of-lagrangian-mechanics-over-newtonian-mechanics on Physics Stack Exchange, fucking closed question...
- www.quora.com/Why-was-Lagrangian-formalism-needed-in-the-presence-of-Newtonian-formalism
- www.researchgate.net/post/What_is_the_advantage_of_Lagrangian_formalism_over_Hamiltonian_formalism_in_QFT
Bibliography:
- www.physics.usu.edu/torre/6010_Fall_2010/Lectures.html Physics 6010 Classical Mechanics lecture notes by Charles Torre from Utah State University published on 2010,
- Classical physics only. The last lecture: www.physics.usu.edu/torre/6010_Fall_2010/Lectures/12.pdf mentions Lie algebra more or less briefly.
- www.damtp.cam.ac.uk/user/tong/dynamics/two.pdf by David Tong
Euler-Lagrange equation explained intuitively - Lagrangian Mechanics by Physics Videos by Eugene Khutoryansky (2018)
Source. Well, unsurprisingly, it is exactly what you can expect from an Eugene Khutoryansky video.A way to defined geometry without talking about coordinates, i.e. like Euclid's Elements, notably Euclid's postulates, as opposed to Descartes's Real coordinate space.
With major mathematicians holding ideas such as:it is not surprise that the state of STEM education is so shit as of 2020, especially at the the missing link between basic and advanced! This also implies that the number of people that can appreciate any advanced mathematics research is tiny, and consequently so is the funding.
Exposition, criticism, appreciation, is work for second-rate minds. [...] It is a melancholy experience for a professional mathematician to find himself writing about mathematics. The function of a mathematician is to do something, to prove new theorems, to add to mathematics, and not to talk about what he or other mathematicians have done.
Cirocoins can only be issued by Ciro Santilli.
Cirocoins are strictly nominal, and cannot be traded by recipients with anyone but Ciro, i.e. they are extremely illiquid.
Cirocoins can be removed from recipients at any point if they commit non-Cirist acts.
It is not possible to give a precise number to how many Cirocoins anyone owns. This is decided on a transaction by transaction basis. Ciro can therefore only inform you if your Cirocoin balance increased or decreased, but any attached number has no value, and thus are equivalent to expressions of type "you gained/lost a Cirocoin".
It is hard to decide what makes Ciro Santilli more sad: the usage of Greek letters, the invention of new symbols, or the fifty million alternative font styles used.
Only Chinese characters could be worse than that!
- Renders: stacks.math.columbia.edu/. HTML is one tiny section per page, making it unreadable.
- LaTeX source: github.com/stacks/stacks-project
The book is very dry, extremelly boring unfortunately. Definition and theorem only for the most part.
C plus plus is what you get when you want to have all of:
Python graphics engine open sourced at: github.com/3b1b/manim "Animation engine for explanatory math videos". But for some reason there is a community fork: github.com/ManimCommunity/manim/ "This repository is maintained by the Manim Community, and is not associated with Grant Sanderson or 3Blue1Brown in any way (though we are definitely indebted to him for providing his work to the world). If you want to study how Grant makes his videos, head over to his repository (3b1b/manim). This is a more frequently updated repository than that one, and is recommended if you want to use Manim for your own projects." what a mess.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact