- math.stackexchange.com/questions/23312/what-is-the-importance-of-eigenvalues-eigenvectors/3503875#3503875
- math.stackexchange.com/questions/1520832/real-life-examples-for-eigenvalues-eigenvectors
- matheducators.stackexchange.com/questions/520/what-is-a-good-motivation-showcase-for-a-student-for-the-study-of-eigenvalues
The general result from eigendecomposition of a matrix:becomes:where is an orthogonal matrix, and therefore has .
A good definition is that the sparse matrix has non-zero entries proportional the number of rows. Therefore this is Big O notation less than something that has non zero entries. Of course, this only makes sense when generalizing to larger and larger matrices, otherwise we could take the constant of proportionality very high for one specific matrix.
Can represent a symmetric bilinear form as shown at matrix representation of a symmetric bilinear form, or a quadratic form.
WTF is a skew? "Antisymmetric" is just such a better name! And it also appears in other definitions such as antisymmetric multilinear map.
- experimentalhistory.substack.com/p/the-rise-and-fall-of-peer-review The rise and fall of peer review by Adam Mastroianni (2022)
One of the most beautiful things is how they paywall even public domain works. E.g. here: www.nature.com/articles/119558a0 was published in 1927, and is therefore in the public domain as of 2023. But it is of course just paywalled as usual throughout 2023. There is zero incentive for them to open anything up.
The publishing scandal happening right now by Andy Stapleton (2023)
Source. TOOD get the name of the academic who quit.When we have a symmetric matrix, a change of basis keeps symmetry iff it is done by an orthogonal matrix, in which case:
A member of the underlying field of a vector space. E.g. in , the underlying field is , and a scalar is a member of , i.e. a real number.
TODO what is the point of them? Why not just sum over every index that appears twice, regardless of where it is, as mentioned at: www.maths.cam.ac.uk/postgrad/part-iii/files/misc/index-notation.pdf.
Those in indices on bottom are called contravariant vectors.
It is possible to change between them by Raising and lowering indices.
The values are different only when the metric signature matrix is different from the identity matrix.
Given the function :the operator can be written in Planck units as:often written without function arguments as:Note how this looks just like the Laplacian in Einstein notation, since the d'Alembert operator is just a generalization of the laplace operator to Minkowski space.
Directly modelled by group.
For continuous symmetries, see: Lie group.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact