Corollary by Ciro Santilli 37 Updated 2025-07-16
An easy to prove theorem that follows from a harder to prove theorem.
Lemma (mathematics) by Ciro Santilli 37 Updated 2025-07-16
A theorem that is not very important on its own, often an intermediate step to proving something that the author feels deserves the name "theorem".
The geometry of divisors is a topic in algebraic geometry that deals with the study of divisors on algebraic varieties, particularly within the context of the theory of algebraic surfaces and higher-dimensional varieties. A divisor on an algebraic variety is an algebraic concept that intuitively represents "subvarieties" or "subsets", often associated with codimension 1 subvarieties, such as curves on surfaces or hypersurfaces in higher dimensions.
Set (mathematics) by Ciro Santilli 37 Updated 2025-07-16
Intuitively: unordered container where all the values are unique, just like C++ std::set.
More precisely for set theory formalization of mathematics:
  • everything is a set, including the elements of sets
  • string manipulation wise:
    • {} is an empty set. The natural number 0 is defined as {} as well.
    • {{}} is a set that contains an empty set
    • {{}, {{}}} is a set that contains two sets: {} and {{}}
    • {{}, {}} is not well formed, because it contains {} twice
Cardinality by Ciro Santilli 37 Updated 2025-07-16
The size of a set.
For finite sizes, the definition is simple, and the intuitive name "size" matches well.
But for infinity, things are messier, e.g. the size of the real numbers is strictly larger than the size of the integers as shown by Cantor's diagonal argument, which is kind of what justifies a fancier word "cardinality" to distinguish it from the more normal word "size".
The key idea is to compare set sizes with bijections.
Injective function by Ciro Santilli 37 Updated 2025-07-16
Mnemonic: in means into. So we are going into a codomain that is large enough so that we can have a different image for every input.
Surjective function by Ciro Santilli 37 Updated 2025-07-16
Mnemonic: sur means over. So we are going over the codomain, and covering it entirely.
Codomain by Ciro Santilli 37 Updated 2025-07-16
Vs: image: the codomain is the set that the function might reach.
The image is the exact set that it actually reaches.
E.g. the function:
could have:
Note that the definition of the codomain is somewhat arbitrary, e.g. could as well technically have codomain:
even though it will obviously never reach any value in .
The exact image is in general therefore harder to characterize.
Function by signature by Ciro Santilli 37 Updated 2025-07-16
In this section we classify some functions by the type of inputs and outputs they take and produce.
Functional function by Ciro Santilli 37 Updated 2025-07-16
This is about functions that take functions as input or output.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact