Federal Bureau of Investigation by Ciro Santilli 35 Updated +Created
Serial wire debug by Ciro Santilli 35 Updated +Created
Oxford Nanopore MinION by Ciro Santilli 35 Updated +Created
One of the sequencers made by Oxford Nanopore Technologies.
The device has had several updates since however, notably of the pore proteins which are present in the critical flow cell consumable.
Official documentation: nanoporetech.com/products/minion (archive)
The following images of the device and its peripherals were taken during the experiment: Section "How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in it".
Figure 1.
Top view of a closed Oxford Nanopore MinION
. Source.
Figure 2.
Side view of an Oxford Nanopore MinION
. Source.
Figure 3.
Top view of an open Oxford Nanopore MinION
. Source.
Figure 4.
Oxford Nanopore MinION side USB
. Source.
Figure 5.
Oxford nanopore MinION flow cell package.
Source.
Figure 6.
Oxford nanopore MinION flow cell front.
Source.
Figure 7.
Oxford nanopore MinION flow cell back.
Source.
Figure 8.
Oxford nanopore MinION flow cell pipette loading.
Source.
Figure 9.
Oxford Nanopore MinION connected to a Mac via USB.
Source.
Video 1.
Oxford Nanopore MinION software channels pannel on Mac.
Source.
Discrete mathematics by Ciro Santilli 35 Updated +Created
Homodimer by Ciro Santilli 35 Updated +Created
Titanium by Ciro Santilli 35 Updated +Created
Output overview by Ciro Santilli 35 Updated +Created
Run output is placed under out/:
Some of the output data is stored as .cpickle files. To observe those files, you need the original Python classes, and therefore you have to be inside Docker, from the host it won't work.
We can list all the plots that have been produced under out/ with
find -name '*.png'
Plots are also available in SVG and PDF formats, e.g.:
  • PNG: ./out/manual/plotOut/low_res_plots/massFractionSummary.png
  • SVG: ./out/manual/plotOut/svg_plots/massFractionSummary.svg The SVGs write text as polygons, see also: SVG fonts.
  • PDF: ./out/manual/plotOut/massFractionSummary.pdf
The output directory has a hierarchical structure of type:
./out/manual/wildtype_000000/000000/generation_000000/000000/
where:
  • wildtype_000000: variant conditions. wildtype is a human readable label, and 000000 is an index amongst the possible wildtype conditions. For example, we can have different simulations with different nutrients, or different DNA sequences. An example of this is shown at run variants.
  • 000000: initial random seed for the initial cell, likely fed to NumPy's np.random.seed
  • genereation_000000: this will increase with generations if we simulate multiple cells, which is supported by the model
  • 000000: this will presumably contain the cell index within a generation
We also understand that some of the top level directories contain summaries over all cells, e.g. the massFractionSummary.pdf plot exists at several levels of the hierarchy:
./out/manual/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/000000/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/000000/generation_000000/000000/plotOut/massFractionSummary.pdf
Each of thoes four levels of plotOut is generated by a different one of the analysis scripts:
  • ./out/manual/plotOut: generated by python runscripts/manual/analysisVariant.py. Contains comparisons of different variant conditions. We confirm this by looking at the results of run variants.
  • ./out/manual/wildtype_000000/plotOut: generated by python runscripts/manual/analysisCohort.py --variant_index 0. TODO not sure how to differentiate between two different labels e.g. wildtype_000000 and somethingElse_000000. If -v is not given, a it just picks the first one alphabetically. TODO not sure how to automatically generate all of those plots without inspecting the directories.
  • ./out/manual/wildtype_000000/000000/plotOut: generated by python runscripts/manual/analysisMultigen.py --variant_index 0 --seed 0
  • ./out/manual/wildtype_000000/000000/generation_000000/000000/plotOut: generated by python runscripts/manual/analysisSingle.py --variant_index 0 --seed 0 --generation 0 --daughter 0. Contains information about a single specific cell.
Islamic sect by Ciro Santilli 35 Updated +Created
Devil by Ciro Santilli 35 Updated +Created
How computers work? by Ciro Santilli 35 Updated +Created
A computer is a highly layered system, and so you have to decide which layers you are the most interested in studying.
Although the layer are somewhat independent, they also sometimes interact, and when that happens it usually hurts your brain. E.g., if compilers were perfect, no one optimizing software would have to know anything about microarchitecture. But if you want to go hardcore enough, you might have to learn some lower layer.
It must also be said that like in any industry, certain layers are hidden in commercial secrecy mysteries making it harder to actually learn them. In computing, the lower level you go, the more closed source things tend to become.
But as you climb down into the abyss of low level hardcoreness, don't forget that making usefulness is more important than being hardcore: Figure 1. "xkcd 378: Real Programmers".
First, the most important thing you should know about this subject: cirosantilli.com/linux-kernel-module-cheat/should-you-waste-your-life-with-systems-programming
Here's a summary from low-level to high-level:
Figure 1.
xkcd 378: Real Programmers
. Source.
Video 1.
How low can you go video by Ciro Santilli (2017)
Source. In this infamous video Ciro has summarized the computer hierarchy.
Design pattern by Ciro Santilli 35 Updated +Created
Chu (state) by Ciro Santilli 35 Updated +Created
Piezoelectric actuator by Ciro Santilli 35 Updated +Created
RSA (cryptosystem) by Ciro Santilli 35 Updated +Created
Based on the fact that we don't have a P algorithm for integer factorization as of 2020. But nor proof that one does not exist!
The private key is made of two randomly generated prime numbers: and . How such large primes are found: how large primes are found for RSA.
The public key is made of:
  • n = p*q
  • a randomly chosen integer exponent between 1 and e_max = lcm(p -1, q -1), where lcm is the Least common multiple
Given a plaintext message m, the encrypted ciphertext version is:
c = m^e mod n
This operation is called modular exponentiation can be calculated efficiently with the Extended Euclidean algorithm.
The inverse operation of finding the private m from the public c, e and is however believed to be a hard problem without knowing the factors of n.
However, if we know the private p and q, we can solve the problem. As follows.
First we calculate the modular multiplicative inverse. TODO continue.
Tangible and intangible assets by Ciro Santilli 35 Updated +Created
Bell Labs Holmdel by Ciro Santilli 35 Updated +Created
Microwave transmission by Ciro Santilli 35 Updated +Created
String polarization by Ciro Santilli 35 Updated +Created
This is about the polarization of a string in 3D space. That is the first concept of polarization you must have in mind!
Heaven by Ciro Santilli 35 Updated +Created
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact