The additive identity is a concept in mathematics that refers to a number which, when added to any other number, does not change the value of that number. In the set of real numbers (as well as in many other mathematical systems), the additive identity is the number \(0\).
The additive inverse of a number is the value that, when added to that number, results in zero. In mathematical terms, for any number \( a \), its additive inverse is \( -a \).
In the context of machine learning and natural language processing, the term "embedding problem" can refer to several related concepts, primarily revolving around the challenge of representing complex data in a form that can be effectively processed by algorithms. Here are some key aspects: 1. **Embedding Vectors**: In machine learning, "embedding" typically refers to the transformation of high-dimensional data into a lower-dimensional vector space. This is crucial for enabling efficient computation and understanding relationships between data points.
Bendixson's inequality is a result in the theory of dynamical systems, particularly in the study of differential equations. It provides a criterion for the non-existence of periodic orbits in certain types of planar systems. In more detail, Bendixson's inequality applies to a continuous, planar vector field given by a differential equation.
The inverse limit (or projective limit) is a concept in topology and abstract algebra that generalizes the notion of taking a limit of sequences or families of objects. It is particularly useful in the study of topological spaces, algebraic structures, and their relationships.
In the context of Wikipedia, a "stub" refers to an article that is incomplete or lacking in detail and therefore needs expansion. "Applied mathematics stubs" specifically refer to articles related to applied mathematics that have been identified as needing more comprehensive information. Applied mathematics is a branch of mathematics that deals with mathematical methods and techniques that are typically used in practical applications in science, engineering, business, and other fields.
A Cauchy sequence is a sequence of elements in a metric space (or a normed vector space) that exhibits a particular convergence behavior, focusing on the distances between its terms rather than on their actual limits.
In algebra, particularly in the context of group theory and ring theory, the term "center" refers to a specific subset of a mathematical structure that has particular properties. 1. **Center of a Group**: For a group \( G \), the center of \( G \), denoted as \( Z(G) \), is defined as the set of elements in \( G \) that commute with every other element of \( G \).
Closure with a twist is a concept often referred to in discussions about narrative structure, particularly in literature and film. It generally involves providing a resolution to a story while simultaneously adding an unexpected element or twist that recontextualizes the events that have unfolded. This can challenge the audience's previous understanding of the characters, plot, or themes by introducing a surprising revelation or turning the conclusion in a new direction.
Hidden algebra is a mathematical framework used primarily in the context of reasoning about data types and their behaviors in computer science, particularly within the fields of algebraic specification and programming languages. It focuses on the concept of abstracting certain internal operations or states of a system while preserving essential behaviors that are observable from an external perspective.
A conformal linear transformation is a type of function that preserves angles and the shapes of infinitesimally small figures but may change their size. In a more technical sense, it refers to a linear transformation in a vector space that is characterized by its ability to maintain the angle between any two vectors after transformation.
In mathematics, the concept of a "direct product" can refer to different things depending on the context, but it most commonly appears in the fields of algebra, particularly in group theory and ring theory. ### In Group Theory The **direct product** of two groups \( G \) and \( H \) is a group, denoted \( G \times H \), formed by the Cartesian product of the sets \( G \) and \( H \) equipped with a specific group operation.
In mathematics, particularly in linear algebra and abstract algebra, the concept of a **direct sum** refers to a specific way of combining vector spaces or modules. Here are the key aspects of the direct sum: ### Direct Sum of Vector Spaces 1.
The Dixmier conjecture is a well-known hypothesis in the field of functional analysis and operator theory. Formulated by Jacques Dixmier in the 1960s, the conjecture relates to the so-called "derivations" on certain types of algebraic structures, particularly C*-algebras.
Embedding, in the context of machine learning and natural language processing (NLP), refers to a technique used to represent items, such as words, entities, or even entire documents, in a continuous vector space. These vectors can capture semantic meanings and relationships between the items, allowing for effective analysis and processing. ### Key Points about Embeddings: 1. **Dense Representation**: Unlike traditional representations (e.g., one-hot encoding), embeddings provide a more compact and informative representation.
In mathematics, a **field** is a set equipped with two binary operations that generalize the arithmetic of rational numbers. These operations are typically called addition and multiplication, and they must satisfy certain properties. Specifically, a field is defined as follows: 1. **Closure**: For any two elements \( a \) and \( b \) in the field, both \( a + b \) and \( a \cdot b \) are also in the field.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact