Transdisciplinarity is an approach to research and problem-solving that integrates knowledge and methods from multiple disciplines, as well as from non-academic stakeholders, to address complex issues that cannot be fully understood or solved within the confines of a single discipline. It goes beyond traditional interdisciplinary collaboration by emphasizing the co-production of knowledge among scholars, practitioners, decision-makers, and communities.
Integral Theory, developed by philosopher Ken Wilber, is a comprehensive framework that seeks to synthesize various fields of knowledge, including psychology, philosophy, spirituality, and science, into a cohesive model for understanding human experience and development. At its core, Integral Theory aims to provide a holistic view of reality, accommodating multiple perspectives and dimensions of existence.
Synergy is a concept that refers to the interaction or cooperation of two or more agents, entities, or organizations that results in a combined effect greater than the sum of their individual effects. The term is often used in various contexts, including business, biology, medicine, and psychology. In business, synergy can occur when companies merge or collaborate, allowing them to achieve greater efficiencies, create enhanced products or services, or access new markets that they couldn't effectively reach on their own.
"Wholistic reference" seems to be a combination of two concepts: "wholistic," which typically refers to an approach that considers the whole of something rather than just its individual parts, and "reference," which can pertain to a source of information, context, or citation. In various fields such as health, education, and philosophy, the term "wholistic" (or "holistic") is often used to emphasize the importance of viewing a subject or system in its entirety.
A "vertiginous question" often refers to a question that causes a sense of disorientation or confusion, much like the sensation of vertigo. This can happen when the question is complex, paradoxical, or challenges one's understanding or perspective in a profound way. Such questions might provoke deep thought or introspection, often leading to a feeling of being overwhelmed by the implications or possibilities presented.
The Method of Analytic Tableaux, also known simply as tableaux or semantic tableaux, is a formal proof system used in logic, particularly in the context of propositional logic and first-order logic. It is a decision procedure that allows for the systematic exploration of the truth values of logical formulas to determine their satisfiability or validity. ### Key Features of Analytic Tableaux: 1. **Tree Structure**: The method employs a tree-like structure to explore the implications of logical formulas.
Proof by exhaustion, also known as proof by cases, is a mathematical proof technique used to establish the truth of a statement by considering all possible cases. In this method, an assertion is proven true by demonstrating that it holds for each individual case within a finite and manageable set of cases. The steps typically include: 1. **Identify the Statement**: Clearly define the statement or theorem that needs to be proven.
Isagoge, also known as "Isagoge ad Porphyrium," is a philosophical work written by the ancient philosopher Porphyry in the 3rd century CE. The title translates from Greek as "Introduction" or "Access," and the work serves as an introduction to Aristotle's categories and a commentary on the nature of universals, species, and individuals. Porphyry's Isagoge focuses on the classification of beings and the systematic organization of knowledge.
Vagueness and degrees of truth are important concepts in philosophy, particularly in the fields of logic, semantics, and the philosophy of language. ### Vagueness Vagueness refers to the phenomenon where a term or concept lacks a precise boundary or definition. For instance, consider the term "tall." What exactly qualifies someone as tall? While we might have an intuitive understanding, there are no strict criteria that apply universally.
Convergence of probability measures is a concept in probability theory that deals with how a sequence of probability measures converges to a limiting probability measure. There are several modes of convergence that characterize this behavior, and each is important in different contexts, particularly in statistics, stochastic processes, and analysis.
Stacks Project is an open-source blockchain network designed to enable smart contracts and decentralized applications (dApps) on the Bitcoin network. Originally launched as Blockstack in 2013, the project focuses on enhancing Bitcoin's functionality by allowing developers to build applications while leveraging the security and reliability of the Bitcoin blockchain. Key features of Stacks include: 1. **Smart Contracts**: Stacks uses a unique programming language called Clarity, which is designed for secure contracts and provides predictable execution.
"Viewpoints: Mathematical Perspective and Fractal Geometry in Art" is likely a thematic exploration or exhibition that focuses on the intersection of mathematics, particularly concepts like perspective and fractals, with visual art. While I don't have specific details on this particular title or event, I can outline its general themes based on the topics mentioned. ### Key Themes 1. **Mathematical Perspective**: - This often refers to the techniques used to create the illusion of depth and space in two-dimensional art.
Mathematics and Computer Education refers to the interdisciplinary study and teaching of mathematics and computer science, focusing on developing students' skills and understanding in these two fields. Here's a breakdown of each component: ### Mathematics Education - **Definition**: This is the practice of teaching and learning mathematics, which includes various branches such as arithmetic, algebra, geometry, calculus, statistics, and more.
The Mathematical Gazette is a scholarly journal that publishes articles related to mathematics and mathematics education. Established in 1894, it is one of the oldest mathematics journals still in publication. The journal features a wide range of content, including research articles, problem-solving, historical articles, reviews, and teaching resources. It aims to promote mathematical understanding and foster a community among mathematicians, educators, and enthusiasts.
Tsachik Gelander is an individual known for multiple roles, primarily in the fields of academia and as an entrepreneur. His work often intersects with data science, artificial intelligence, and business innovation. As an academic, he may be involved in research and teaching in these areas, contributing to advancements in technology and its applications.
Martin Gardner (1914-2010) was a prolific American popularizer of mathematics and a highly regarded author in the fields of mathematics, magic, philosophy, and skepticism. His bibliography comprises numerous books and articles, including his long-running column in "Scientific American." Below are some notable works by Martin Gardner: ### Books 1.
"The Incoherence of the Philosophers" (Arabic: "Tahāfut al-Falāsifah") is a significant philosophical work by the medieval Islamic philosopher Al-Ghazali, written in the early 12th century (around 1095). In this work, Al-Ghazali critiques the philosophies of some prominent thinkers, particularly the Aristotelian philosophers, whom he believed strayed from true religious understanding and reason.
The Felix Klein Protocols refer to a series of cryptographic protocols designed for secure multi-party computations, particularly in the context of privacy-preserving machine learning and data sharing. Named after the mathematician Felix Klein, the protocols aim to ensure that multiple parties can collaborate on computations while keeping their input data private from one another.
Edward Barbeau is a mathematician known for his contributions to various fields within mathematics, including mathematical analysis, the theory of functions, and applied mathematics. He has been involved in research related to the mathematical modeling of physical phenomena and has published numerous research papers and articles. Additionally, he is well-regarded in the academic community for his work in mathematics education and has been involved in teaching at the university level.
George Csicsery is a prominent mathematician and filmmaker known for his work in the field of mathematics, particularly in the area of mathematical visualization and education. He is recognized for directing and producing films that highlight the beauty and complexity of mathematics, aiming to make mathematical concepts more accessible and engaging to a broader audience. One of his notable works includes "The Music of Reason," which explores the lives and ideas of mathematicians.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact