Variation of saturation magnetisation with temperature for Nickel
. Source. This graph shows what happens when you approach the Curie temperature from below.The wiki comments: en.wikipedia.org/w/index.php?title=Ferromagnetism&oldid=965600553#Explanation
The Bohr-van Leeuwen theorem, discovered in the 1910s, showed that classical physics theories are unable to account for any form of magnetism, including ferromagnetism. Magnetism is now regarded as a purely quantum mechanical effect. Ferromagnetism arises due to two effects from quantum mechanics: spin and the Pauli exclusion principle.
Toy model of matter that exhibits phase transition in dimension 2 and greater. It does not provide numerically exact results by itself, but can serve as a tool to theorize existing and new phase transitions.
As mentioned at: stanford.edu/~jeffjar/statmech/intro4.html some systems which can be seen as modelled by it include:
- the spins direction (up or down) of atoms in a magnet, which can undergo phase transitions depending on temperature as that characterized by the Curie temperature and an externally applied magnetic fieldNeighboring spins like to align, which lowers the total system energy.
- the type of atom at a lattice point in a 2-metal alloy, e.g. Fe-C (e.g. steel). TODO: intuition for the neighbor interaction? What likes to be with what? And aren't different phases in different crystal structures?
Also has some funky relations to renormalization TODO.
Bibliography:
The Ising Model in Python by Mr. P Solver
. Source. The dude is crushing it on a Jupyter Notebook.A tiny idealized magnet! It is a very good model if you have a small strong magnet interacting with objects that are far away, notably other magnetic dipoles or a constant magnetic field.
The cool thing about this model is that we have simple explicit formulas for the magnetic field it produces, and for how this little magnet is affected by a magnetic field or by another magnetic dipole.
They are pioneers in making superconducting magnets, physicist from the university taking obsolete equipment from the uni to his garage and making a startup kind of situation. This was particularly notable for this time and place.
They became a major supplier for magnetic resonance imaging applications.
Used to explain the black-body radiation experiment.
Published as: On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
The Quantum Story by Jim Baggott (2011) page 9 mentions that Planck apparently immediately recognized that Planck constant was a new fundamental physical constant, and could have potential applications in the definition of the system of units (TODO where was that published):This was a visionary insight, and was finally realized in the 2019 redefinition of the SI base units.
Planck wrote that the constants offered: 'the possibility of establishing units of length, mass, time and temperature which are independent of specific bodies or materials and which necessarily maintain their meaning for all time and for all civilizations, even those which are extraterrestrial and nonhuman, constants which therefore can be called "fundamental physical units of measurement".'
TODO how can it be derived from theoretical principles alone? There is one derivation at; en.wikipedia.org/wiki/Planck%27s_law#Derivation but it does not seem to mention the Schrödinger equation at all.
Derived from classical first principles, matches Planck's law for low frequencies, but diverges at higher frequencies.
- The Quantum Story by Jim Baggott (2011) page 10 mentions:and the footnote comments:
Early examples of such cavities included rather expensive closed cylinders made from porcelain and platinum.
- 1859-60 Gustav Kirchhoff demonstrated that the ratio of emitted to absorbed energy depends only on the frequency of the radiation and the temperature inside the cavity
- 1896 Wien approximation seems to explain existing curves well
- 1900 expriments by Otto Lummer and Ernst Pringsheim show Wien approximation is bad for lower frequencies
- 1900-10-07 Heinrich Rubens visits Planck in Planck's villa in the Berlin suburb of Grünewald and informs him about new experimental he and Ferdinand Kurlbaum obtained, still showing that Wien approximation is bad
- 1900 Planck's law matches Lummer and Pringsheim's experiments well. Planck forced to make the "desperate" postulate that energy is exchanged in quantized lumps. Not clear that light itself is quantized however, he thinks it might be something to do with allowed vibration modes of the atoms of the cavity rather.
- 1900 Rayleigh-Jeans law derived from classical first principles matches Planck's law for low frequencies, but diverges at higher frequencies.
Black-body Radiation Experiment by sciencesolution (2008)
Source. A modern version of the experiment with a PASCO scientific EX-9920 setup.What is the Ultraviolet Catastrophe? by Physics Explained (2020)
Source. Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact







