Existence and uniqueness results are fundamental in mathematics because we often define objects by their properties, and then start calling them "the object", which is fantastically convenient.
But calling something "the object" only makes sense if there exists exactly one, and only one, object that satisfies the properties.
One particular context where these come up very explicitly is in solutions to differential equations, e.g. existence and uniqueness of solutions of partial differential equations.
Degree (algebra) by Ciro Santilli 40 Updated 2025-07-16
The degree of some algebraic structure is some parameter that describes the structure. There is no universal definition valid for all structures, it is a per structure type thing.
This is particularly useful when talking about structures with an infinite number of elements, but it is sometimes also used for finite structures.
Examples:
Dual vector by Ciro Santilli 40 Updated 2025-07-16
Dual vectors are the members of a dual space.
In the context of tensors , we use raised indices to refer to members of the dual basis vs the underlying basis:
The dual basis vectors are defined to "pick the corresponding coordinate" out of elements of V. E.g.:
By expanding into the basis, we can put this more succinctly with the Kronecker delta as:
Note that in Einstein notation, the components of a dual vector have lower indices. This works well with the upper case indices of the dual vectors, allowing us to write a dual vector as:
In the context of quantum mechanics, the bra notation is also used for dual vectors.
Kōsaku Yoshida (sometimes spelled Yosida) is a prominent Japanese mathematician known for his contributions to functional analysis, particularly in the area of operator theory. His work has influenced various fields within mathematics, including the theory of Hilbert spaces and the study of abstract algebraic structures. Yoshida is also recognized for his efforts in mathematics education and for publishing textbooks that help explain complex mathematical concepts in an accessible manner.
If is the change of basis matrix, then the matrix representation of a bilinear form that looked like:
then the matrix in the new basis is:
Sylvester's law of inertia then tells us that the number of positive, negative and 0 eigenvalues of both of those matrices is the same.
Proof: the value of a given bilinear form cannot change due to a change of basis, since the bilinear form is just a function, and does not depend on the choice of basis. The only thing that change is the matrix representation of the form. Therefore, we must have:
and in the new basis:
and so since:
Symmetric bilinear map by Ciro Santilli 40 Updated 2025-07-16
Subcase of symmetric multilinear map:
Requires the two inputs and to be in the same vector space of course.
The most important example is the dot product, which is also a positive definite symmetric bilinear form.
We can then immediately see that the matrix is symmetric, then so is the form. We have:
But because is a scalar, we have:
and:
Quadratic form by Ciro Santilli 40 Updated 2025-07-16
Multivariate polynomial where each term has degree 2, e.g.:
is a quadratic form because each term has degree 2:
but e.g.:
is not because the term has degree 3.
More generally for any number of variables it can be written as:
There is a 1-to-1 relationship between quadratic forms and symmetric bilinear forms. In matrix representation, this can be written as:
where contains each of the variabes of the form, e.g. for 2 variables:
Strictly speaking, the associated bilinear form would not need to be a symmetric bilinear form, at least for the real numbers or complex numbers which are commutative. E.g.:
But that same matrix could also be written in symmetric form as:
so why not I guess, its simpler/more restricted.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact