Computational phylogenetics is a subfield of bioinformatics that focuses on the analysis and interpretation of evolutionary relationships among biological entities, such as species, genes, or proteins, using computational methods. It involves the development and application of algorithms, statistical models, and software tools to reconstruct phylogenetic trees (representations of evolutionary pathways) based on molecular or morphological data.
Environmental informatics is an interdisciplinary field that combines environmental science, information technology, data management, and data analysis to address and solve environmental issues. It involves the collection, processing, analysis, and visualization of environmental data to support decision-making, policy development, and research related to environmental management and sustainability.
Semantic analysis in the context of computational linguistics and natural language processing (NLP) refers to the process of understanding and interpreting the meaning of words, phrases, and sentences in a given language. The goal is to extract meaningful information from text, enabling machines to understand context, relationships, and the overall intent behind the language used.
A graphic designer is a professional who uses visual elements to communicate ideas and messages through various forms of media. Their work involves creating designs for a variety of applications, such as websites, advertisements, branding, packaging, print publications, and social media content. Graphic designers combine creativity with technical skills to produce visually appealing and effective designs. Key responsibilities of a graphic designer may include: 1. **Concept Development**: Generating ideas and concepts based on client briefs or project goals.
The Schreier–Sims algorithm is a computational algorithm used for efficiently computing the action of a permutation group on a set, particularly when dealing with groups that are represented in terms of generators and relations. It is particularly useful in the context of coset enumeration and building up a group from its generators. The algorithm is named after two mathematicians, Otto Schreier and Charles Sims.
Distribution Learning Theory typically refers to a set of theoretical frameworks and concepts used in the field of machine learning and statistics, particularly in relation to how algorithms can learn from data that is distributed across different sources or locations. While there isn’t a universally accepted definition of Distribution Learning Theory, several key components can be highlighted: 1. **Data Distribution**: This aspect focuses on understanding the statistical distribution of data. It examines how data points are generated and how they are organized in various feature spaces.
Artificial empathy refers to the ability of a machine or algorithm to recognize, respond to, and simulate human emotions in a way that appears empathetic. This concept is gaining interest in fields such as artificial intelligence (AI), robotics, and human-computer interaction. Unlike genuine human empathy, which arises from emotional experience and understanding, artificial empathy relies on programmed responses, data analysis, and patterns in human behavior.
Artificial General Intelligence (AGI) refers to a type of artificial intelligence that possesses the ability to understand, learn, and apply knowledge across a wide range of tasks at a level that is comparable to or indistinguishable from human intelligence. Unlike narrow AI, which is designed to perform specific tasks (such as image recognition or language translation), AGI would be able to reason, solve problems, and adapt to new situations in a general and flexible manner.
Carina Curto is a prominent neuroscientist known for her research in the field of neuroscience, particularly relating to the mechanisms of the brain and how they influence behavior. She has made significant contributions to understanding sensory processing, neural circuits, and related topics within both developmental and adult neuroscience. Curto's work often employs advanced imaging techniques and quantitative analyses to explore the underlying principles of neural function and connectivity. Additionally, she may be involved in teaching and mentoring students in the field of neuroscience.
The International Neuroinformatics Coordinating Facility (INCF) is an international organization that aims to promote collaboration and data sharing in the field of neuroinformatics, which is the discipline that combines neuroscience and informatics to facilitate the collection, sharing, and analysis of data related to the brain and nervous system. Established in 2005, the INCF works to enhance the ability of researchers worldwide to leverage computational tools and data resources to better understand neural systems.
The Human Brain Project (HBP) is a major scientific initiative that aims to advance our understanding of the human brain and develop new computing technologies inspired by brain function. Launched in 2013 as part of the European Union's Future and Emerging Technologies (FET) program, the project is one of the largest neuroscience research initiatives in the world.
The Linear-Nonlinear-Poisson (LNP) cascade model is a framework used in computational neuroscience to describe how sensory neurons process information. It captures the relationship between the stimuli (inputs) that a neuron receives and its firing rate (output), providing insights into the underlying mechanisms of neural coding. Here's a breakdown of the components of the LNP model: 1. **Linear Component**: The first stage of the model involves a linear transformation of the input stimulus.
A modular neural network is a type of neural network architecture that is composed of multiple independent or semi-independent modules, each designed to handle specific parts of a task or a set of related tasks. The key idea behind modular neural networks is to break down complex problems into simpler, more manageable components, allowing for greater flexibility, scalability, and specialization.
A Multi-Simulation Coordinator is a role or position that typically involves overseeing and managing multiple simulation processes or environments simultaneously. This function is often found in fields such as: 1. **Healthcare**: In medical training, a Multi-Simulation Coordinator might be responsible for organizing and facilitating various simulation scenarios for healthcare professionals, ensuring that different departments or specializations (like surgery, emergency response, or nursing) are effectively trained using realistic simulations.
Neurocomputational speech processing is an interdisciplinary field that combines principles from neuroscience, computer science, and linguistics to study and develop systems capable of processing human speech. This area of research seeks to understand how the brain processes spoken language and to model these processes in computational terms.
New Lab is a collaborative workspace and innovation hub located in the Brooklyn Navy Yard in New York City. Founded in 2018, New Lab focuses on fostering entrepreneurship, particularly in fields like advanced manufacturing, robotics, artificial intelligence, and other emerging technologies. It provides a platform for startups, artists, engineers, and designers to collaborate, share resources, and develop their projects.
Dynamical simulation is a computational method used to model and analyze the behavior of systems that evolve over time. This approach is commonly applied in various fields such as physics, engineering, biology, economics, and computer science. The goal of dynamical simulation is to study how systems change in response to various inputs, initial conditions, or changes in parameters.
Temporal Difference (TD) learning is a central concept in the field of reinforcement learning (RL), which is a type of machine learning concerned with how agents ought to take actions in an environment in order to maximize some notion of cumulative reward. TD learning combines ideas from Monte Carlo methods and Dynamic Programming. Here are some key features of Temporal Difference learning: 1. **Learning from Experience:** TD learning allows an agent to learn directly from episodes of experience without needing a model of the environment.
Tensor network theory is a mathematical framework used primarily in quantum physics and condensed matter physics to represent complex quantum states and perform calculations involving them. The core idea is to represent high-dimensional tensors (which can be thought of as a generalization of vectors and matrices) in a more manageable way using networks of interconnected tensors. This representation can simplify computations and help in understanding the structure of quantum states, particularly in many-body systems. ### Key Concepts 1.
Weak artificial intelligence, also known as narrow AI, refers to AI systems that are designed and trained to perform specific tasks or solve particular problems. Unlike strong AI, which aims to replicate human cognitive abilities and general reasoning across a wide range of situations, weak AI operates within a limited domain and does not possess consciousness, self-awareness, or genuine understanding.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact