The equation that allows us to calculate stuff in special relativity!
Take two observers with identical rules and stopwatch, and aligned axes, but one is on a car moving at towards the direction at speed .
When both observe an event, if we denote:It is of course arbitrary who is standing and who is moving, we will just use the term "standing" for the one without primes.
- the observation of the standing observer
- the observation of the ending observer on a car
Note that if tends towards zero, then this reduces to the usual Galilean transformations which our intuition expects:
Same motivation as Galilean invariance, but relativistic version of that: we want the laws of physics to have the same form on all inertial frames, so we really want to write them in a way that is Lorentz covariant.
This is just the relativistic version of that which takes the Lorentz transformation into account instead of just the old Galilean transformation.
Lorentz transform consequence: everyone sees the same speed of light by
Ciro Santilli 37 Updated 2025-07-16
OK, so let's verify the main desired consequence of the Lorentz transformation: that everyone observes the same speed of light.
Observers will measure the speed of light by calculating how long it takes the light going towards cross a rod of length laid in the x axis at position .
Each observer will observe two events:
Supposing that the standing observer measures the speed of light as and that light hits the left side of the rod at time , then he observes the coordinates:
Now, if we transform for the moving observer:and so the moving observer measures the speed of light as:
Suppose that a rod has is length measured on a rest frame (or maybe even better: two identical rulers were manufactured, and one is taken on a spaceship, a bit like the twin paradox).
Question: what is the length than an observer in frame moving relative to as speed observe the rod to be?
The key idea is that there are two events to consider in each frame, which we call 1 and 2:Note that what you visually observe on a photograph is a different measurement to the more precise/easy to calculate two event measurement. On a photograph, it seems you might not even see the contraction in some cases as mentioned at en.wikipedia.org/wiki/Terrell_rotation
- the left end of the rod is an observation event at a given position at a given time: and for or and for
- the right end of the rod is an observation event at a given position at a given time : and for or and for
By plugging those values into the Lorentz transformation, we can eliminate , and conclude that for any , the length contraction relation holds:
The key question that needs intuitive clarification then is: but how can this be symmetric? How can both observers see each other's rulers shrink?
And the key answer is: because to the second observer, the measurements made by the first observer are not simultaneous. Notably, the two measurement events are obviously spacelike-separated events by looking at the light cone, and therefore can be measured even in different orders by different observers.
What you would see the moving rod look like on a photo of a length contraction experiment, as opposed as using two locally measured separate spacetime events to measure its length.
One of the best ways to think about it is the transversal time dilation thought experiment.
Light watch transverse to direction of motion. This case is interesting because it separates length contraction from time dilation completely.
Of course, as usual in special relativity, calling something "time dilation" leads us to mind boggling ideas of "symmetry breaking": if both frames have a light watch, how can both possibly observe the other to be time dilated?
And the answer to this, is the usual: in special relativity time and space are interwoven in a fucked up way, everything is just a spacetime event.
In this case, there are three spacetime events of interest: both clocks start at same position, your beam hits up at x=0, moving frame hits up at x>0.
Those two mentioned events are spacelike-separated events, and therefore even though they seem simultaneous to you, they are not going to be simultaneous to the moving observer!
If little clock one meter away from you tells you that at the time of some event (your light beam hit up) the moving light watch was only 50% up, this is just a number given by your one meter away watch!
It appears that Maxwell's equations can be derived directly from Coulomb's law + special relativity:
This idea is suggested by the charged particle moving at the same speed of electrons thought experiment, which indicates that magnetism is just a consenquence of special relativity.
Why moving charges produce magnetic field? by FloatHeadPhysics (2022)
Source. In the above experiment:
- from the wire frame, the charge feels electromagnetic force, because it is moving and there is a magnetic field
- from the single charge frame, there is still magnetic field (positive charges are moving), but the body itself is not moving, so there is no force!
The solution to this problem is length contraction: the positive charges are length contracted and the moving electrons aren't, and therefore they are denser and therefore there is an effective charge from that frame.
This is also mentioned at David Tong www.damtp.cam.ac.uk/user/tong/em/el4.pdf (archive) "David Tong: Lectures on Electromagnetism - 5. Electromagnetism and Relativity" "5.2.1 Magnetism and Relativity".
How Special Relativity Fixed Electromagnetism by The Science Asylum (2019)
Source. See also: covariance.
Subtle is the Lord by Abraham Pais (1982) chapter III "Relativity, the special theory" mentions that this fact and its importance (we want the laws of physics to look the same on all inertial frames, AKA Lorentz covariance) was first fully relized by poincaré in 1905.
And at that same time poincaré also immediately started to think about the other fundamental force then known: gravity, and off the bat realized that gravitational waves must exist. general relativities is probably just "the simplest way to make gravity Lorentz covariant".
Because the Minkowski inner product product is not positive definite, the norm induced by an inner product is a norm, and the space is not a metric space strictly speaking.
This form is not really an inner product in the common modern definition, because it is not positive definite, only a symmetric bilinear form.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





