Present value (PV) is a financial concept that refers to the current worth of a sum of money or stream of cash flows that will be received or paid in the future, discounted back to the present using a specific interest rate. The idea behind present value is that a dollar today is worth more than a dollar in the future due to the potential earning capacity of money, which is often referred to as the time value of money.
Net Positive Suction Head (NPSH) is an important hydrodynamic parameter in pump operation, particularly in ensuring that a pump operates efficiently and does not cavitate. It is a measure of the pressure available at the suction side of the pump compared to the vapor pressure of the liquid being pumped. NPSH is typically expressed in terms of head (usually in meters or feet).
The Veronese surface is a well-known example in algebraic geometry, and it is often studied in relation to the projective geometry of higher-dimensional spaces. Specifically, it is defined as a two-dimensional algebraic surface that can be embedded in projective space. The Veronese surface can be constructed by considering the image of the projective plane under the Veronese embedding.
Alexander Anderson is a mathematician known primarily for his work in the field of combinatorial mathematics and is particularly notable for his contributions to the theory of algorithms and computational mathematics. He has published research on topics such as sorting algorithms and the analysis of data structures, and his work often explores the connections between mathematics and computer science.
Andrei Roiter is a Russian-born artist known for his work in painting, drawing, and conceptual art. He is recognized for his unique blend of styles and techniques, often incorporating elements of surrealism, abstraction, and symbolic imagery. Roiter's art typically explores themes such as identity, memory, and the human experience. He has exhibited his work in various galleries and art institutions worldwide.
Abbas Wasim Efendi is a title that likely refers to a historical figure or scholar from the Ottoman Empire, where "Efendi" is an honorific title commonly used in Turkish-speaking areas. However, without further specific context, it's challenging to provide more detailed information.
The proof uses Turing machine acceleration to show that Skelet machine #1 is a Translated cycler Turing machine with humongous cycle paramters:
  • start between 50-200 M steps, not calculated precisely on the original post
  • period: ~8 billion steps
Busy beaver scale by Ciro Santilli 40 Updated 2025-07-16
The Busy beaver scale allows us to gauge the difficulty of proving certain (yet unproven!) mathematical conjectures!
To to this, people have reduced certain mathematical problems to deciding the halting problem of a specific Turing machine.
A good example is perhaps the Goldbach's conjecture. We just make a Turing machine that successively checks for each even number of it is a sum of two primes by naively looping down and trying every possible pair. Let the machine halt if the check fails. So this machine halts iff the Goldbach's conjecture is false! See also Conjecture reduction to a halting problem.
Therefore, if we were able to compute , we would be able to prove those conjectures automatically, by letting the machine run up to , and if it hadn't halted by then, we would know that it would never halt.
Of course, in practice, is generally uncomputable, so we will never know it. And furthermore, even if it were computable, it would take a lot longer than the age of the universe to compute any of it, so it would be useless.
However, philosophically speaking at least, the number of states of the equivalent Turing machine gives us a philosophical idea of the complexity of the problem.
The busy beaver scale is likely mostly useless, since we are able to prove that many non-trivial Turing machines do halt, often by reducing problems to simpler known cases. But still, it is cute.
But maybe, just maybe, reduction to Turing machine form could be useful. E.g. The Busy Beaver Challenge and other attempts to solve BB(5) have come up with large number of automated (usually parametrized up to a certain threshold) Turing machine decider programs that automatically determine if certain (often large numbers of) Turing machines run forever.
So it it not impossible that after some reduction to a standard Turing machine form, some conjecture just gets automatically brute-forced by one of the deciders, this is a path to
If you can reduce a mathematical problem to the Halting problem of a specific turing machine, as in the case of a few machines of the Busy beaver scale, then using Turing machine deciders could serve as a method of automated theorem proving.
That feels like it could be an elegant proof method, as you reduce your problem to one of the most well studied representations that exists: a Turing machine.
However it also appears that certain problems cannot be reduced to a halting problem... OMG life sucks (or is awesome?): Section "Turing machine that halts if and only if Collatz conjecture is false".
Intuitively we see that the situation is fundamentally different from the Turing machine that halts if and only if the Goldbach conjecture is false because for Collatz the counter example must go off into infinity, while in Goldbach conjecture we can finitely check any failures.
Amazing.
Function problem by Ciro Santilli 40 Updated 2025-07-16
A problem that has more than two possible yes/no outputs.
It is therefore a generalization of a decision problem.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact