Focal length by Ciro Santilli 37 Updated 2025-07-16
If you pass parallel light.
For a biconvex spherical lens, it is given by:
where:
  • n: f nidnex
Carl Zeiss AG by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Carl Zeiss, Explained by Asianometry (2021)
Source.
Video 2.
How Carl Zeiss Crafts Optics for a $150 Million EUV Machine
. Source. Difficulty: light at those frequencies get absorbed by lenses. So you have to use mirrors instead.
Carl Zeiss SMT by Ciro Santilli 37 Updated 2025-07-16
Subsidiary of Carl Zeiss AG and also part owned by ASML, sole optics vendor of ASML as of 2020.
Silicon photonics by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Silicon Photonics: The Next Silicon Revolution? by Asianometry (2022)
Source.
Video 2.
Running Neural Networks on Meshes of Light by Asianometry (2022)
Source.
Video 3.
Silicon Photonics for Extreme Computing by Keren Bergman (2017)
Source.
Polarization of light by Ciro Santilli 37 Updated 2025-07-16
This section discusses the pre-photon understanding of the polarization of light. For the photon one see: photon polarization.
People were a bit confused when experiments started to show that light might be polarized. How could a wave that propages through a 3D homgenous material like luminiferous aether have polarization?? Light would presumably be understood to be analogous to a sound wave in 3D medium, which cannot have polarization. This was before Maxwell's equations, in the early 19th century, so there was no way to know.
Particularly cool is to see how Fresnel fully understood that light is somehow polarized, even though he did not know that it was made out of electromagnetism, clear indication of which only came with the Faraday effect in 1845.
spie.org/publications/fg05_p03_maluss_law:
At the beginning of the nineteenth century the only known way to generate polarized light was with a calcite crystal. In 1808, using a calcite crystal, Malus discovered that natural incident light became polarized when it was reflected by a glass surface, and that the light reflected close to an angle of incidence of 57° could be extinguished when viewed through the crystal. He then proposed that natural light consisted of the s- and p-polarizations, which were perpendicular to each other.
Malus' Law by Ciro Santilli 37 Updated 2025-07-16
Matches the quantum superposition probability proportional to the square law. Poor Étienne-Louis Malus, who died so much before this was found.
Poincaré sphere by Ciro Santilli 37 Updated 2025-07-16
A more photon-specific version of the Bloch sphere.
In it, each of the six sides has a clear and simple to understand photon polarization state, either of:
The sphere clearly suggests for example that a rotational or diagonal polarizations are the combination of left/right with the correct phase. This is clearly explained at: Video "Quantum Mechanics 9b - Photon Spin and Schrodinger's Cat II by ViaScience (2013)".

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact