Topics Top articles New articles Updated articles Top users New users New discussions Top discussions New comments+ New article
Measurement and circuit based quantum computers by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Quantum computing is hard because we want long coherence but fast control by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Mentioned e.g. at:
These are two conflicting constraints:
- long coherence times: require isolation from external world, otherwise observation destroys quantum state
- fast control and readout: require coupling with external world
Organization developing quantum hardware by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
TODO clear example of the computational problem that it solves.
Noisy intermediate-scale quantum era by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Era of quantum computing before we reach physical errors small enough to do perfect quantum error correction as demonstrated by the quantum threshold theorem.
These appear to be benchmarks that don't involve running anything concretely, just compiling and likely then counting gates:
Sample implementations:
Programmer's model of quantum computers by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
This is a quick tutorial on how a quantum computer programmer thinks about how a quantum computer works. If you know:a concrete and precise hello world operation can be understood in 30 minutes.
- what a complex number is
- how to do matrix multiplication
- what is a probability
Although there are several types of quantum computer under development, there exists a single high level model that represents what most of those computers can do, and we are going to explain that model here. This model is the is the digital quantum computer model, which uses a quantum circuit, that is made up of many quantum gates.
Beyond that basic model, programmers only may have to consider the imperfections of their hardware, but the starting point will almost always be this basic model, and tooling that automates mapping the high level model to real hardware considering those imperfections (i.e. quantum compilers) is already getting better and better.
The way quantum programmers think about a quantum computer in order to program can be described as follows:
- the input of a N qubit quantum computer is a vector of dimension N containing classic bits 0 and 1
- the quantum program, also known as circuit, is a unitary matrix of complex numbers that operates on the input to generate the output
- the output of a N qubit computer is also a vector of dimension N containing classic bits 0 and 1
To operate a quantum computer, you follow the step of operation of a quantum computer:
- set the input qubits to classic input bits (state initialization)
- press a big red "RUN" button
- read the classic output bits (readout)
Each time you do this, you are literally conducting a physical experiment of the specific physical implementation of the computer:and each run as the above can is simply called "an experiment" or "a measurement".
- setup your physical system to represent the classical 0/1 inputs
- let the state evolve for long enough
- measure the classical output back out
The output comes out "instantly" in the sense that it is physically impossible to observe any intermediate state of the system, i.e. there are no clocks like in classical computers, further discussion at: quantum circuits vs classical circuits. Setting up, running the experiment and taking the does take some time however, and this is important because you have to run the same experiment multiple times because results are probabilistic as mentioned below.
Unlike in a classical computer, the output of a quantum computer is not deterministic however.
But the each output is not equally likely either, otherwise the computer would be useless except as random number generator!
This is because the probabilities of each output for a given input depends on the program (unitary matrix) it went through.
Therefore, what we have to do is to design the quantum circuit in a way that the right or better answers will come out more likely than the bad answers.
We then calculate the error bound for our circuit based on its design, and then determine how many times we have to run the experiment to reach the desired accuracy.
The probability of each output of a quantum computer is derived from the input and the circuit as follows.
First we take the classic input vector of dimension N of 0's and 1's and convert it to a "quantum state vector" of dimension :
We are after all going to multiply it by the program matrix, as you would expect, and that has dimension !
Note that this initial transformation also transforms the discrete zeroes and ones into complex numbers.
For example, in a 3 qubit computer, the quantum state vector has dimension and the following shows all 8 possible conversions from the classic input to the quantum state vector:
000 -> 1000 0000 == (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
001 -> 0100 0000 == (0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
010 -> 0010 0000 == (0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0)
011 -> 0001 0000 == (0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0)
100 -> 0000 1000 == (0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0)
101 -> 0000 0100 == (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
110 -> 0000 0010 == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
111 -> 0000 0001 == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
This can be intuitively interpreted as:
- if the classic input is
000
, then we are certain that all three bits are 0.Therefore, the probability of all three 0's is 1.0, and all other possible combinations have 0 probability. - if the classic input is
001
, then we are certain that bit one and two are 0, and bit three is 1. The probability of that is 1.0, and all others are zero. - and so on
Now that we finally have our quantum state vector, we just multiply it by the unitary matrix of the quantum circuit, and obtain the dimensional output quantum state vector :
And at long last, the probability of each classical outcome of the measurement is proportional to the square of the length of each entry in the quantum vector, analogously to what is done in the Schrödinger equation.
For example, suppose that the 3 qubit output were:
Then, the probability of each possible outcomes would be the length of each component squared:i.e. 75% for the first, and 25% for the third outcomes, where just like for the input:
- first outcome means
000
: all output bits are zero - third outcome means
010
: the first and third bits are zero, but the second one is 1
All other outcomes have probability 0 and cannot occur, e.g.:
001
is impossible.Keep in mind that the quantum state vector can also contain complex numbers because we are doing quantum mechanics, but we just take their magnitude in that case, e.g. the following quantum state would lead to the same probabilities as the previous one:
This interpretation of the quantum state vector clarifies a few things:
- the input quantum state is just a simple state where we are certain of the value of each classic input bit
- the matrix has to be unitary because the total probability of all possible outcomes must be 1.0This is true for the input matrix, and unitary matrices have the probability of maintaining that property after multiplication.Unitary matrices are a bit analogous to self-adjoint operators in general quantum mechanics (self-adjoint in finite dimensions implies is stronger)This also allows us to understand intuitively why quantum computers may be capable of accelerating certain algorithms exponentially: that is because the quantum computer is able to quickly do an unitary matrix multiplication of a humongous sized matrix.If we are able to encode our algorithm in that matrix multiplication, considering the probabilistic interpretation of the output, then we stand a chance of getting that speedup.
As we could see, this model is was simple to understand, being only marginally more complex than that of a classical computer, see also: quantumcomputing.stackexchange.com/questions/6639/is-my-background-sufficient-to-start-quantum-computing/14317#14317 The situation of quantum computers today in the 2020's is somewhat analogous to that of the early days of classical circuits and computers in the 1950's and 1960's, before CPU came along and software ate the world. Even though the exact physics of a classical computer might be hard to understand and vary across different types of integrated circuits, those early hardware pioneers (and to this day modern CPU designers), can usefully view circuits from a higher level point of view, thinking only about concepts such as:as modelled at the register transfer level, and only in a separate compilation step translated into actual chips. This high level understanding of how a classical computer works is what we can call "the programmer's model of a classical computer". So we are now going to describe the quantum analogue of it.
- logic gates like AND, NOR and NOT
- a clock + registers
Bibliography:
- arxiv.org/pdf/1804.03719.pdf Quantum Algorithm Implementations for Beginners by Abhijith et al. 2020
Communicating at a distance, from Greek "tele" for distance!
A very cool thing about telecommunication is, besides how incredibly fast it advanced (in this sense it is no cooler than integrated circuit development), how much physics and information theory is involved in it. Applications of telecommunication implementation spill over to other fields, e.g. some proposed quantum computing approaches are remarkably related to telecommunication technology, e.g. microwaves and silicon photonics.
This understanding made Ciro Santilli wish he had opted for telecommunication engineering when he was back in school in Brazil. For some incomprehensible reason, telecommunications was the least competitive specialization in the electric engineering department at the time, behind even power electronics. This goes to show both how completely unrelated to reality university is, and how completely outdated Brazil is/was. Sad stuff.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
- Internal cross file references done right:
- Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact