general linear group over a finite field of order . Remember that due to the classification of finite fields, there is one single field for each prime power .
Exactly as over the real numbers, you just put the finite field elements into a matrix, and then take the invertible ones.
This is a good first concrete example of a Lie algebra. Shown at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" has an example.
Every element with this parametrization has determinant 1:Furthermore, any element can be reached, because by independently settting , and , , and can have any value, and once those three are set, is fixed by the determinant.
Remembering that the Lie bracket of a matrix Lie group is really simple, we can then observe the following Lie bracket relations between them:
One key thing to note is that the specific matrices , and are not really fundamental: we could easily have had different matrices if we had chosen any other parametrization of the group.
TODO confirm: however, no matter which parametrization we choose, the Lie bracket relations between the three elements would always be the same, since it is the number of elements, and the definition of the Lie bracket, that is truly fundamental.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" then calculates the exponential map of the vector as:with:
TODO now the natural question is: can we cover the entire Lie group with this exponential? Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation" explains why not.
Just like for the finite general linear group, the definition of special also works for finite fields, where 1 is the multiplicative identity!
Note that the definition of orthogonal group may not have such a clear finite analogue on the other hand.
The group of all transformations that preserve some bilinear form, notable examples:
- orthogonal group preserves the inner product
- unitary group preserves a Hermitian form
- Lorentz group preserves the Minkowski inner product
We can almost reach the Lie algebra of any isometry group in a single go. For every in the Lie algebra we must have:because has to be in the isometry group by definition as shown at Section "Lie algebra of a matrix Lie group".
Bibliography:
Mathematical definition that most directly represents this: the orthogonal group is the group of all matrices that preserve the dot product.
The orthogonal group is the group of all matrices that preserve the dot product by
Ciro Santilli 40 Updated 2025-07-16
What happens to the definition of the orthogonal group if we choose other types of symmetric bilinear forms by
Ciro Santilli 40 Updated 2025-07-16
We looking at the definition the orthogonal group is the group of all matrices that preserve the dot product, we notice that the dot product is one example of positive definite symmetric bilinear form, which in turn can also be represented by a matrix as shown at: Section "Matrix representation of a symmetric bilinear form".
By looking at this more general point of view, we could ask ourselves what happens to the group if instead of the dot product we took a more general bilinear form, e.g.:The answers to those questions are given by the Sylvester's law of inertia at Section "All indefinite orthogonal groups of matrices of equal metric signature are isomorphic".
- : another positive definite symmetric bilinear form such as ?
- what if we drop the positive definite requirement, e.g. ?
The orthogonal group is the group of all invertible matrices where the inverse is equal to the transpose by
Ciro Santilli 40 Updated 2025-07-16
Let's show that this definition is equivalent to the orthogonal group is the group of all matrices that preserve the dot product.
Note that:and for that to be true for all possible and then we must have:i.e. the matrix inverse is equal to the transpose.
These matricese are called the orthogonal matrices.
TODO is there any more intuitive way to think about this?
Elements of the orthogonal group have determinant plus or minus one by
Ciro Santilli 40 Updated 2025-07-16
The orthogonal group is the group of all matrices with orthonormal rows and orthonormal columns by
Ciro Santilli 40 Updated 2025-07-16
Or equivalently, the set of rows is orthonormal, and so is the set of columns. TODO proof that it is equivalent to the orthogonal group is the group of all matrices that preserve the dot product.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





