Fluid mechanics Updated 2025-07-16
Boooooring.
Mental state Updated 2025-07-16
Basically the same content as: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979), but maybe there is some merit to this talk, as it is a bit more direct in some points. This is consistent with what is mentioned at www.feynman.com/science/qed-lectures-in-new-zealand/ that the Auckland lecture was the first attempt.
By Mill Valley, CA based producer "Sound Photosynthesis", some info on their website: sound.photosynthesis.com/Richard_Feynman.html
They are mostly a New Age production company it seems, which highlights Feynman's absolute cult status. E.g. on the last video, he's not wearing shoes, like a proper guru.
Feynman liked to meet all kinds of weird people, and at some point he got interested in the New Age Esalen Institute. Surely You're Joking, Mr. Feynman this kind of experience a bit, there was nude bathing on a pool that oversaw the sea, and a guy offered to give a massage to the he nude girl and the accepted.
youtu.be/rZvgGekvHest=5105 actually talks about spin, notably that the endpoint events also have a spin, and that the transition rules take spin into account by rotating thing, and that the transition rules take spin into account by rotating things.
Group homomorphism Updated 2025-07-16
Like isomorphism, but does not have to be one-to-one: multiple different inputs can have the same output.
The image is as for any function smaller or equal in size as the domain of course.
This brings us to the key intuition about group homomorphisms: they are a way to split out a larger group into smaller groups that retains a subset of the original structure.
As shown by the fundamental theorem on homomorphisms, each group homomorphism is fully characterized by a normal subgroup of the domain.
Transistor Updated 2025-07-16
Although transistors were revolutionary, it is fun to note that they were just "way cheaper and more reliable and smaller" versions of exactly the main functions that a vacuum tube could achieve
Quantum mechanics Updated 2025-07-16
Quantum mechanics is quite a broad term. Perhaps it is best to start approaching it from the division into:
Mathematics: there are a few models of increasing precision which could all be called "quantum mechanics":
Ciro Santilli feels that the largest technological revolutions since the 1950's have been quantum related, and will continue to be for a while, from deeper understanding of chemistry and materials to quantum computing, understanding and controlling quantum systems is where the most interesting frontier of technology lies.
Borrow from the Internet Archive for free: archive.org/details/supermenstory00murr
Initial chapters put good clarity on the formation of the military-industrial complex. Being backed by the military, especially just after World War II, was in itself enough credibility to start and foster a company.
It is funny to see how the first computers were very artisanal, made on a one-off basis.
Amazing how Control Data Corporation raised capital IPO style as a startup without a product. The dude was selling shares at dinner parties in his home.
Very interesting mention on page 70 of how Israel bought CDC's UNIVAC 1103 which Cray contributed greatly to design, and everyone knew that it was to make thermonuclear weapons, since that was what the big American labs like this mention should be added to: en.wikipedia.org/wiki/Nuclear_weapons_and_Israel but that's Extended Protected... the horrors of Wikipedia.
Another interesting insight is how "unintegrated" computers were back then. They were literally building computers out of individual vacuum tubes, then individual semiconducting transistors, a gate at a time. Then things got more and more integrated as time went. That is why the now outdated word "microprocessor" existed. When processors start to fit into a single integrated circuit, they were truly micro compared to the monstrosities that existed previously.
Also, because integration was so weak initially, it was important to more manually consider the length of wire signals had to travel, and try to put components closer together to reduce the critical path to be able to increase clock speeds. These constraints are also of course present in modern computer design, but they were just so much more visible in those days.
The book does unfortunately not give much detail in Crays personal life as mentioned on this book review: www.goodreads.com/review/show/1277733185?book_show_action=true. His childhood section is brief, and his wedding is described in one paragraph, and divorce in one sentence. Part of this is because he was very private about his family most likely note how Wikipedia had missed his first wedding, and likely misattribute children to the second wedding; en.wikipedia.org/wiki/Talk:Seymour_Cray section "Weddings and Children".
Crays work philosophy is is highlighted many times in the book, and it is something worthy to have in mind:
  • if a design is not working, start from scratch
  • don't be the very first pioneer of a technology, let others work out the problems for you first, and then come second and win
Cray's final downfall was when he opted to try to use a promising but hard to work with material gallium arsenide instead of silicon as his way to try and speed up computers, see also: gallium arsenide vs silicon. Also, he went against the extremely current of the late 80's early 90's pointing rather towards using massively parallel systems based on silicon off-the-shelf Intel processors, a current that had DARPA support, and which by far the path that won very dramatically as of 2020, see: Intel supercomputer market share.
Male Updated 2025-07-16
Penis Updated 2025-07-16
Quantum field theory Updated 2025-07-16
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:
Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
There appear to be two main equivalent formulations of quantum field theory:
Video 1.
Quantum Field Theory visualized by ScienceClic English (2020)
Source. Gives one piece of possibly OK intuition: quantum theories kind of model all possible evolutions of the system at the same time, but with different probabilities. QFT is no different in that aspect.
Video 2.
Quantum Fields: The Real Building Blocks of the Universe by David Tong (2017)
Source. Boring, does not give anything except the usual blabla everyone knows from Googling:
Video 3.
Quantum Field Theory: What is a particle? by Physics Explained (2021)
Source. Gives some high level analogies between high level principles of non-relativistic quantum mechanics and special relativity in to suggest that there is a minimum quanta of a relativistic quantum field.

Unlisted articles are being shown, click here to show only listed articles.