Hund's rules Updated +Created
Allow us to determine with good approximation in a multi-electron atom which electron configuration have more energy. It is a bit like the Aufbau principle, but at a finer resolution.
Note that this is not trivial since there is no explicit solution to the Schrödinger equation for multi-electron atoms like there is for hydrogen.
For example, consider carbon which has electron configuration 1s2 2s2 2p2.
If we were to populate the 3 p-orbitals with two electrons with spins either up or down, which has more energy? E.g. of the following two:
m_L -1  0  1
    u_ u_ __
    u_ __ u_
    __ ud __
Group axiom Updated +Created
Matrix inverse Updated +Created
When it exists, which is not for all matrices, only invertible matrix, the inverse is denoted:
Spy Updated +Created
Arkarya Updated +Created
Name of the clade of archaea plus eukarya proposed at: www.frontiersin.org/articles/10.3389/fmicb.2015.00717/full. Much better term than prokaryote as that is not a clade. Let's hope it catches on!
Next steps Updated +Created
  • upload all of cirosantilli.com to ourbigbook.com. I will do this by implementing an import from filesystem functionality based on the OurBigBook CLI. This will also require implementing slit headeres on the server to work well, I'll need to create one Article for every header on render.
  • get \x and \Include working on the live web preview editor. This will require creating a new simple API, currently the editor jus shows broken references, but final render works because it goes through the database backend
  • implement email verification signup. Finally! Maybe add some notifications too, e.g. on new comments or likes.
Closed source is less bad on online services Updated +Created
Ciro Santilli can accept closed source on server products more easily than offline, because the servers have to be paid for somehow (by stealing your private data).
Closed source offline software used by millions Updated +Created
Closed source on offline products used by millions of people is evil, when you could just have those for free with open source software! Thus Ciro's hatred for Microsoft Windows and MacOS (at least userland, maybe).
tshark Updated +Created
Sample usage:
sudo tshark -f 'host 192.168.1.102
This produces simple one liners for each request.
What you likely want is the -V option which fully disassembles each frame much as you can do in the GUI Wireshark:
sudo tshark -V -f 'host 192.168.1.102
PyZX Updated +Created
1965 Nobel Prize in Physics laureate Updated +Created
Impenetrable Bose Gas Updated +Created
Explicit scalar form of the Maxwell's equations Updated +Created
For numerical algorithms and to get a more low level understanding of the equations, we can expand all terms to the simpler and more explicit form:
Cloud chamber Updated +Created
Figure 1.
Radium 226 source in a cloud chamber
. Source.
Video 1.
How to make a cloud chamber by Suzie Sheehy (2011)
Source.
64-bit architectures Updated +Created
64 bits is still too much address for current RAM sizes, so most architectures will use less bits.
x86_64 uses 48 bits (256 TiB), and legacy mode's PAE already allows 52-bit addresses (4 PiB). 56-bits is a likely future candidate.
12 of those 48 bits are already reserved for the offset, which leaves 36 bits.
If a 2 level approach is taken, the best split would be two 18 bit levels.
But that would mean that the page directory would have 2^18 = 256K entries, which would take too much RAM: close to a single-level paging for 32 bit architectures!
Therefore, 64 bit architectures create even further page levels, commonly 3 or 4.
x86_64 uses 4 levels in a 9 | 9 | 9 | 9 scheme, so that the upper level only takes up only 2^9 higher level entries.
The 48 bits are split equally into two disjoint parts:
----------------- FFFFFFFF FFFFFFFF
Top half
----------------- FFFF8000 00000000


Not addressable


----------------- 00007FFF FFFFFFFF
Bottom half
----------------- 00000000 00000000
A 5-level scheme is emerging in 2016: software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf which allows 52-bit addresses with 4k pagetables.
Ciro Santilli Myers-Briggs Type Indicator Updated +Created
Ciro Santilli feels that Ciro Santilli Myers-Briggs Type Indicator is much more random/hard to determine than the Big Five personality traits
Upon a quick look Ciro Santilli evaluates himself as INTJ.
PAE Updated +Created
Physical address extension.
With 32 bits, only 4GB RAM can be addressed.
This started becoming a limitation for large servers, so Intel introduced the PAE mechanism to Pentium Pro.
To relieve the problem, Intel added 4 new address lines, so that 64GB could be addressed.
Page table structure is also altered if PAE is on. The exact way in which it is altered depends on weather PSE is on or off.
PAE is turned on and off via the PAE bit of cr4.
Even if the total addressable memory is 64GB, individual process are still only able to use up to 4GB. The OS can however put different processes on different 4GB chunks.
2012 Internet Census icmp_ping Updated +Created
Let's check relevancy of known hits:
grep -e '208.254.40' -e '208.254.42' 208 | tee 208hits
Output:
208.254.40.95	1355564700	unreachable
208.254.40.95	1355622300	unreachable
208.254.40.96	1334537100	alive, 36342
208.254.40.96	1335269700	alive, 17586

..

208.254.40.127	1355562900	alive, 35023
208.254.40.127	1355593500	alive, 59866
208.254.40.128	1334609100	unreachable
208.254.40.128	1334708100	alive from 208.254.32.214, 43358
208.254.40.128	1336596300	unreachable
The rest of 208 is mostly unreachable.
208.254.42.191	1335294900	unreachable
...
208.254.42.191	1344737700	unreachable
208.254.42.191	1345574700	Icmp Error: 0,ICMP Network Unreachable, from 63.111.123.26 
208.254.42.191	1346166900	unreachable
...
208.254.42.191	1355665500	unreachable
208.254.42.192	1334625300	alive, 6672
...
208.254.42.192	1355658300	alive, 57412
208.254.42.193	1334677500	alive, 28985
208.254.42.193	1336524300	unreachable
208.254.42.193	1344447900	alive, 8934
208.254.42.193	1344613500	alive, 24037
208.254.42.193	1344806100	alive, 20410
208.254.42.193	1345162500	alive, 10177
...
208.254.42.223	1336590900	alive, 23284
...
208.254.42.223	1355555700	alive, 58841
208.254.42.224	1334607300	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142 
208.254.42.224	1334681100	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142 
208.254.42.224	1336563900	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.142 
208.254.42.224	1344451500	Icmp Type: 11,ICMP Time Exceeded, from 65.214.56.138 
208.254.42.224	1344566700	unreachable
208.254.42.224	1344762900	unreachable
Let's try with 66. First there way too much data, 9 GB, let's cut it down:
n=66
time awk '$3~/^alive,/ { print $1 }' $n | uniq -c | sed -r 's/^ +//;s/ /,/' | tee $n-up-uniq-c
OK down to 45 MB, now we can work.
grep -e '66.45.179' -e '66.104.169' -e '66.104.173' -e '66.104.175' -e '66.175.106' '66-alive-uniq-c' | tee 66hits
Nah, it's full of holes:
4,66.45.179.187
12,66.45.179.188
2,66.45.179.197
1,66.45.179.202
2,66.45.179.205
2,66.45.179.206
1,66.45.179.207
won't be able to find new ranges here.

There are unlisted articles, also show them or only show them.